
Reinforcement Learning Through a Probabilistic Lens

METIS 2025: Trends in Machine Learning

Salem Lahlou, MBZUAI, https://la7.lu

S a l e m L a h l o u - M E T I S 2 0 2 5

1 / 111

https://la7.lu/

Section 1: Introduction & Motivation S a l e m L a h l o u - M E T I S 2 0 2 5

2 / 111

The Quest for Intelligent Agents & Planning

The grand ambition: Creating machines that can perceive, reason, learn, plan,
and act intelligently in complex, dynamic environments.

How do we build systems that can make good sequences of decisions to achieve
goals? This involves planning – figuring out a course of action.

Machine Learning (ML) provides the tools for systems to learn from experience,
often to improve their planning and decision-making capabilities.

Reinforcement Learning (RL) is a powerful paradigm for learning optimal plans or
policies through trial and error, guided by rewards, directly addressing this quest
for intelligent, planning agents.

S a l e m L a h l o u - M E T I S 2 0 2 5

3 / 111

What is Machine Learning? Types of Learning Tasks
Machine Learning: Algorithms that enable computer systems to learn from data
and improve their performance on a specific task without being explicitly
programmed for each case.

Major Types of Learning Tasks:

Supervised Learning: Learning from labeled data (). Goal is to learn a
mapping , where f aims to minimize some loss .

Unsupervised Learning: Learning from unlabeled data (). Goal is to find
patterns, structure, or representations in the data.

Examples: Clustering, dimensionality reduction (PCA), anomaly detection.

Reinforcement Learning: Learning to make sequences of decisions by
interacting with an environment to achieve a long-term goal.
(More on this next!)

S a l e m L a h l o u - M E T I S 2 0 2 5

4 / 111

What is Reinforcement Learning?

Example: An Urban Delivery Robot
deciding whether to move, charge, or
deliver based on its location, battery,
and package status to maximize
successful deliveries.

An agent learns to make a sequence of
decisions by interacting with an
environment to achieve a long-term
goal.

Core components: Agent,
Environment, State (), Action (),
Reward ().

The agent observes the state, takes an
action, receives a reward, and
transitions to a new state.

The goal is to learn a policy (a
strategy for decision-making) that
maximizes the cumulative reward:

S a l e m L a h l o u - M E T I S 2 0 2 5

5 / 111

RL's Roots: Pavlov & Learning by Association

Ivan Pavlov (1890s-1900s): Classical Conditioning

The Famous Experiment: Pavlov, a Russian physiologist, was initially studying
digestion in dogs. He noticed that dogs would begin to salivate not just when
they saw food, but also at the sight of the lab assistant who brought the food, or
even the sound of their footsteps.

The Discovery: He systematically showed that a neutral stimulus (like a bell)
could become associated with an unconditioned stimulus (food, which naturally
causes salivation).

This demonstrated associative learning – an organism can learn to associate one
stimulus with another and thus learn to predict an upcoming event (the food).

S a l e m L a h l o u - M E T I S 2 0 2 5

6 / 111

RL's Roots: Thorndike & The Law of Effect

Edward Thorndike (1898-1911): The Law of Effect

Puzzle Box Experiments: Thorndike placed cats in "puzzle boxes". To escape and
get a food reward, the cats had to perform a specific action, like pulling a lever or
stepping on a platform.

Observation: Initially, cats performed
many random actions. Over
successive trials, the time it took to
escape decreased as they gradually
learned the connection between the
correct action and the satisfying
outcome (escape and food).

The Law of Effect (1911): Thorndike formulated this principle:

This was the first formal articulation of the reinforcement principle. It directly
states that actions are strengthened or weakened by their consequences. This is
the absolute core of how RL agents learn.

S a l e m L a h l o u - M E T I S 2 0 2 5

Responses that produce a satisfying effect in a particular situation become
more likely to occur again in that situation, and responses that produce a
discomforting effect become less likely to occur again in that situation.

“

“

7 / 111

RL's Roots: Skinner & Shaping Behavior

B.F. Skinner (1930s-1950s): Operant (Instrumental) Conditioning

Active Learning: Unlike Pavlov's classical conditioning (which focused on
existing reflexes and associations), Skinner studied how entirely new behaviors
could be learned and shaped when an animal actively operates on its
environment.

The "Skinner Box": A chamber where animals (e.g., rats, pigeons) could perform
a specific action (like pressing a lever or pecking a disk) to receive a reward (food
pellet) or avoid a punishment.

Shaping & Schedules of Reinforcement:

Skinner went beyond Thorndike's simple trial-and-error. He demonstrated how
complex behaviors could be built up through "shaping" – reinforcing
successive approximations of the desired behavior.

He extensively studied schedules of reinforcement, discovering that how and
when rewards are delivered dramatically affects the rate of learning,
persistence of behavior, and response patterns. This has direct parallels to
reward design and exploration strategies in modern RL.

Extinction: He also showed that when reinforcement stops, the learned behavior
gradually diminishes (extinguishes) – a concept relevant to understanding how
learned associations can fade.

S a l e m L a h l o u - M E T I S 2 0 2 5

8 / 111

RL's Roots: Early Mathematical Ideas

Andrey Markov (Early 1900s): Markov
Chains & Property

Developed the theory of "Markov
chains" – sequences of possible
events (states) where the probability
of transitioning to any future state
depends only on the current state, not
on the sequence of events that
preceded it.

Markov Property:

.

Significance: Provided the core
mathematical framework (Markov
Decision Processes, or MDPs) for
modeling sequential decision-making
problems.

Von Neumann & Morgenstern (1944):
Utility Theory

In their book "Theory of Games and
Economic Behavior," they formalized
the concept of rational decision-
making under uncertainty.

Expected Utility Maximization:
Proposed that rational agents make
choices as if they are maximizing the
expected value of some "utility"
function associated with outcomes.

Significance: This underpins the
objective function in RL, where agents
aim to maximize the expected sum of
(discounted) rewards , with rewards
serving as a proxy for utility.

S a l e m L a h l o u - M E T I S 2 0 2 5

9 / 111

Why a Probabilistic Lens for RL?
Principled Handling of Uncertainty: RL problems are inherently uncertain.
Probability theory allows us to explicitly model and reason about:

Stochasticity in the environment (e.g., the robots movement might not always
succeed, or traffic conditions might vary).

Partial observability (not knowing the true state perfectly).

Uncertainty in the learned model or value functions (which we will categorize
as aleatoric and epistemic).

Unifying Framework: Connects RL to broader statistical concepts like Bayesian
inference and graphical models, providing a common language for diverse
algorithms.

Enhanced Algorithms: Leads to more robust algorithms, better exploration
strategies (e.g., MaxEnt RL encourages exploring diverse behaviors), and a
deeper understanding of complex behaviors.

Foundation for Advanced Topics: Crucial for understanding Bayesian RL,
control as inference, and many modern RL applications that deal with complex
uncertainties.

S a l e m L a h l o u - M E T I S 2 0 2 5

10 / 111

Traditional vs. Probabilistic Reinforcement Learning: A
Comparison

Traditional RL Perspective:

Exploration primarily through -greedy or similar strategies

Focus on finding a single optimal policy

Probabilistic RL Perspective:

Explicit reasoning about distributions over states, actions, and returns

Exploration naturally emerges through uncertainty reasoning

Often learns distribution over policies (or stochastic policies)

Makes the connection between control and inference explicit

S a l e m L a h l o u - M E T I S 2 0 2 5

11 / 111

Talk Roadmap
1. ML Fundamentals (Probabilistic View, including types of uncertainty)

2. Core RL Principles (featuring the Urban Delivery Robot example)

3. RL Through a Probabilistic Lens (Control as Inference, MaxEnt RL)

4. Recent Developments (RLHF, LLMs, Model-Based, Offline, MARL)

5. Conclusion

S a l e m L a h l o u - M E T I S 2 0 2 5

12 / 111

Section 2: Machine Learning Fundamentals: A Probabilistic View S a l e m L a h l o u - M E T I S 2 0 2 5

13 / 111

Probability: The Language of Uncertainty
Machine learning, at its core, is about making sense of data and making
predictions or decisions in the face of uncertainty.

Probability theory provides the mathematical language and tools to:

Quantify uncertainty.

Represent beliefs about unknown quantities.

Update beliefs in light of new evidence.

What do these numbers we call "probabilities" actually represent?

S a l e m L a h l o u - M E T I S 2 0 2 5

14 / 111

What Do We Mean by "Probability"? (Warm-Up 1/4)

We use probabilities daily. But what do they really signify?
Consider these scenarios. Which interpretation of probability feels more natural
for each?

1. Football Analytics: "Based on the shot's angle and distance, the probability of
this player scoring a goal is 0.067."

Is this about long-run frequencies or a belief about this specific kick?

S a l e m L a h l o u - M E T I S 2 0 2 5

15 / 111

What Do We Mean by "Probability"? (Warm-Up 2/4)
2. Existential Risk: An expert states, "The probability of an unaligned

superintelligence causing an existential catastrophe by 2070 is 99%."

Can we repeat this event to get a frequency? Or is it a degree of belief?

S a l e m L a h l o u - M E T I S 2 0 2 5

16 / 111

What Do We Mean by "Probability"? (Warm-Up 3/4)
3. Medical Diagnosis: After an ultrasound, a doctor says, "There's an 80%

probability it's a girl."

Is this based on how often the test is right, or confidence in this specific
image?

S a l e m L a h l o u - M E T I S 2 0 2 5

17 / 111

What Do We Mean by "Probability"? (Warm-Up 4/4)
4. The Metro Gamble: A fare evader thinks, "The probability of an inspector being

on this train is only 4%, and the penalty to pay if I get caught is only 20 times the
ticket price, so it's worth the risk."

Is this 4% based on repeated observations or a one-time belief?

S a l e m L a h l o u - M E T I S 2 0 2 5

18 / 111

Different Flavors of Probability (1/2)

Let's revisit our examples and think about the nature of the probability in each:

1. Football Goal (6.7%):

Informed by past data: The 6.7% likely comes from analyzing thousands of
similar enough kicks (how often they resulted in a goal).

2. AI Existential Risk (99%):

A statement of belief: This reflects an expert's current level of confidence or
reasoned judgment about a complex, unique future event. There's no history of
"AI doom trials" to count frequencies from.

S a l e m L a h l o u - M E T I S 2 0 2 5

19 / 111

Different Flavors of Probability (2/2)

3. Ultrasound Gender (80%):

Based on past accuracy: The 80% likely reflects how often such ultrasound
readings have correctly predicted gender in previous, similar cases (e.g., "in
100 similar readings, the prediction was correct 80 times").

4. Metro Inspector (4%):

Based on observed frequency: The 4% is most naturally understood as an
estimate from past observations (e.g., "inspectors were present on 4 out of the
last 100 trains I took/observed"). It describes how often one might expect to
encounter an inspector over many train rides.

We see two main "flavors" emerging: probabilities based on long-run frequencies of
repeatable events, and probabilities representing a degree of belief about specific,
sometimes unique, situations (even if informed by data). Now, let's give these
formal names...

S a l e m L a h l o u - M E T I S 2 0 2 5

20 / 111

Interpretations of Probability

Frequentist Interpretation

Defines probability as the long-run
relative frequency of an event in a
large number of identical, repeatable
trials.

Subjectivist (Bayesian) Interpretation

Defines probability as a degree of
belief or confidence that a rational
agent assigns to an uncertain
proposition or event.

Beliefs are updated using Bayes'
theorem as new information becomes
available.

The Subjectivist Interpretation is central to Bayesian statistics and the
probabilistic approach to ML and RL we will explore.

Cox's theorem (1946): for degrees of (subjective) beliefs to be rational and
coherent, they have to follow Kolmogorov's axioms of probability (e.g., for a
countable sequence of disjoint events ,)

Both interpretations ultimately adhere to the same mathematical rules.

S a l e m L a h l o u - M E T I S 2 0 2 5

21 / 111

Core Concepts in Probability
Random Variable (X): A variable whose value is a numerical outcome of a
random phenomenon.

Example (Urban Delivery Robot): The next_state after an action is a random
variable due to the 20% slip chance. The battery_level might also be modeled with
noise in a more complex scenario.

Conditional Probability: . The probability of A given
B has occurred.

Bayes' Rule:

: Posterior probability of hypothesis H given evidence E.

: Likelihood of evidence E given hypothesis H.

: Prior probability of hypothesis H.

: Marginal likelihood of evidence E (normalizing constant).

S a l e m L a h l o u - M E T I S 2 0 2 5

22 / 111

Bayesian Inference: Learning as Belief Update

Start with a prior belief about a hypothesis (e.g., parameters of a model,
the true value of a state).

Observe data (evidence) .

Use the likelihood (how probable is the data given the hypothesis) to
update beliefs.

Result: Posterior belief , a refined understanding of the

hypothesis.

This iterative process of updating beliefs is fundamental to how Bayesian
systems learn.

Robot Example (Urban Delivery Robot): It might initially have a uniform prior
over which paths are good. After some trial and error (observing rewards and
transitions), it updates its belief about the value of different paths
(states/actions), effectively learning from experience. This is a core concept
we'll see in RL.

S a l e m L a h l o u - M E T I S 2 0 2 5

23 / 111

Embrace Bayesianism! S a l e m L a h l o u - M E T I S 2 0 2 5

24 / 111

Supervised Learning: A Probabilistic Perspective
Goal: Given a dataset , learn a function to predict from .

Probabilistic Approach: Model the conditional probability , where are
model parameters.

Maximum Likelihood Estimation (MLE): Find that maximizes the likelihood of
observing the training data.

.

Connection to Loss Functions: Minimizing a loss function is often equivalent
to MLE under a specific probabilistic model.

Squared Error Loss (Regression): Corresponds to MLE with a Gaussian
likelihood . Minimizing .

Cross-Entropy Loss (Classification): Corresponds to MLE with a
Categorical/Bernoulli likelihood (e.g., softmax output). Minimizing

.

S a l e m L a h l o u - M E T I S 2 0 2 5

25 / 111

MAP Estimation
Maximum A Posteriori (MAP) Estimation: Incorporates a prior distribution
over the parameters.

.

The prior acts as a regularization term.

Example: Gaussian prior leads to L2 regularization (weight

decay).

Example: Laplacian prior leads to L1 regularization.

S a l e m L a h l o u - M E T I S 2 0 2 5

26 / 111

Understanding Uncertainty in ML: Why It's Crucial

When our models make predictions, a single point estimate (like "70% chance of
rain") often isn't enough. Quantifying the uncertainty around that prediction is
vital:

Reliability & Trust: How much should we trust this prediction? Is it a confident
70% or a very shaky 70%?

Informed Decision-Making:

High uncertainty in a medical diagnosis might lead to more tests.

In autonomous driving, uncertainty about an object could trigger cautious
maneuvers.

Active Learning: Models can identify areas of high uncertainty to request more
data, learning efficiently.

Exploration in RL: Uncertainty about the environment or value of actions can
guide an RL agent to explore more effectively.

Two primary types of uncertainty help us categorize and address this: Aleatoric
and Epistemic.

S a l e m L a h l o u - M E T I S 2 0 2 5

27 / 111

Aleatoric vs. Epistemic: What's the Difference?

Let's consider an example: Throwing a standard six-sided die.

The outcome is uncertain.

Question for you: If we want to model the uncertainty of the die's outcome, is
the uncertainty due to:

(a) The inherent randomness of the die throwing process?

(b) Our lack of knowledge?

(Image prompt: generate an image of a mathematician throwing a six-sided die,
moroccan painting style)

S a l e m L a h l o u - M E T I S 2 0 2 5

28 / 111

The Answer: It depends on our assumptions!
If we assume the die is fair and the throw is "random" from our perspective
(we don't model the detailed physics): The uncertainty is Aleatoric. It's
inherent randomness we can't reduce by knowing more about the die itself, even
if we throw it an infinite number of times (beyond it being fair).

If we believe we could perfectly model the physics (initial position, velocity,
spin, air resistance, surface properties): Then any uncertainty in the outcome
would be due to our lack of perfect knowledge of these initial conditions or the
model parameters. This would be Epistemic. With a perfect physics model and
perfect inputs, the outcome would be deterministic. With a certain number of
throws, we could infer the outcome of the next throw.

This highlights how the type of uncertainty can depend on the scope and fidelity of
our model.

S a l e m L a h l o u - M E T I S 2 0 2 5

29 / 111

Defining and Leveraging Uncertainty Types

Aleatoric Uncertainty (Data/Inherent
Noise)

Irreducible uncertainty inherent in
the data-generating process or the
system's natural stochasticity. Cannot
be reduced even with infinite data of
the same kind.

Sources: Measurement noise,
inherent randomness (like quantum
effects, or our die roll example if
simplified), unobserved influences
(latent variables).

RL Impact: Part of the environment's
transition dynamics . The
agent learns a policy that is robust to
or accounts for this inherent
randomness.

Epistemic Uncertainty
(Model/Knowledge Uncertainty)

Uncertainty due to our lack of
knowledge about the best model or its
parameters. Reducible with more
(diverse) data or a better model class.

Sources: Limited training data
(especially in certain regions of the
input space), model misspecification,.

Example: If a robot hasn't explored an
area, its estimate of state values there
will have high epistemic uncertainty.

RL Impact: Crucial for driving
exploration. High epistemic
uncertainty about or the
model can incentivize the
agent to try those uncertain state-
action pairs to gain more information.

S a l e m L a h l o u - M E T I S 2 0 2 5

30 / 111

More on uncertainty

Why Distinguish?

Aleatoric: Informs us about fundamental predictability limits. We design systems
to be robust to it.

Epistemic: Tells us where our model is ignorant. We can actively reduce it by
collecting more data in those areas (active learning, exploration in RL) or
improving the model.

More details in "DEUP: Direct Epistemic Uncertainty Prediction" - Salem Lahlou*,
Moksh Jain*, Hadi Nekoei, Victor Ion Butoi, Paul Bertin, Jarrid Rector-Brooks,
Maksym Korablyov, Yoshua Bengio, TMLR 2023

S a l e m L a h l o u - M E T I S 2 0 2 5

31 / 111

Neural Networks: Powerful Function Approximators

At their core, Neural Networks (NNs) are computational models inspired by the
structure of biological neural networks. They are powerful tools for learning
complex, non-linear functions.

Basic Structure:

Composed of layers of interconnected
nodes (neurons).

Input Layer: Receives the input data
(e.g., state in RL).

Hidden Layers: Perform intermediate
computations.

Output Layer: Produces the final
output (ideally the target).

Weights () and Biases ():
Parameters associated with
connections and neurons, learned
during training.

Activation Functions (): Introduce
non-linearity (e.g., ReLU, sigmoid,
tanh), allowing NNs to learn complex
patterns.

3B1B
The general form for a feedforward
network can be expressed as:

where represents all weights and
biases.

S a l e m L a h l o u - M E T I S 2 0 2 5

32 / 111

Training Neural Networks

The goal of training a neural network is to find the optimal parameters (weights
and biases) that allow it to perform a desired task accurately.

1. Loss Function ():

Supervised Learning Examples:

Mean Squared Error (MSE) for regression:

Cross-Entropy Loss for classification.

Reinforcement Learning Examples (for value functions) - We will see this later
today!

Mean Squared Bellman Error for TD learning.

2. Gradient Descent:

An iterative optimization algorithm used to minimize the loss function .

Parameters are updated in the direction opposite to the gradient of the loss:
 where is the learning rate.

3. Backpropagation Algorithm:

An efficient algorithm for computing the gradient of the loss function with
respect to all parameters in the network.

S a l e m L a h l o u - M E T I S 2 0 2 5

33 / 111

The Power of NNs: Universal Approximation

Universal Approximation Theorem:

A foundational result stating that a feedforward neural network with a single
hidden layer, a finite number of neurons, and an appropriate non-linear
activation functions (e.g., sigmoid, ReLU), can approximate any continuous
function on compact subsets of to any desired degree of accuracy, given
enough neurons

Implication: Theoretically, NNs are expressive enough to represent arbitrarily
complex functions, including intricate value functions or policies in RL. (Note:
This doesn't guarantee they can be learned efficiently or generalize well from
finite data).

S a l e m L a h l o u - M E T I S 2 0 2 5

34 / 111

Intelligence requires planning
Supervised learning excels at one-shot predictions (from). We learn a
mapping.

However, the quest for intelligent agents often involves more than just
prediction. It involves planning and making a sequence of decisions over time.

In these scenarios, actions have consequences that affect future states and
future rewards. The data is not i.i.d.; it's a stream of experience.

How do we learn optimal sequences of actions when the environment is complex,
uncertain (both aleatoric and epistemic!), and feedback (rewards) might be
delayed or sparse?

This is where Reinforcement Learning (RL) comes in. RL formalizes the problem
of an agent learning to make optimal decisions in an environment to achieve a
long-term cumulative goal. It's about learning how to act or how to plan.

S a l e m L a h l o u - M E T I S 2 0 2 5

35 / 111

How NNs are revolutionizing RL

Revolutionary Impact on Reinforcement Learning (Deep Reinforcement Learning
- Deep RL):

Scaling to High-Dimensional Inputs: NNs can process raw, high-dimensional
inputs like images (e.g., pixels from Atari games in DQN) or complex sensor data,
where traditional tabular RL methods are infeasible.

Automatic Feature Extraction: Deep NNs (especially Convolutional NNs for
images) can learn relevant features from raw data, reducing the need for manual
feature engineering.

Generalization: They can generalize from states seen during training to similar,
unseen states, which is crucial for large or continuous state spaces.

End-to-End Learning: Enable learning complex behaviors directly from raw
inputs to actions.

Breakthroughs: This combination led to major successes like DQN mastering
Atari games, AlphaGo defeating human champions, and advancements in robotics
and other complex control tasks.

S a l e m L a h l o u - M E T I S 2 0 2 5

36 / 111

Section 3: Core Reinforcement Learning Principles S a l e m L a h l o u - M E T I S 2 0 2 5

37 / 111

The Reinforcement Learning Problem
Agent: The learner and decision-maker.

Environment: Everything outside the agent; it reacts to the agent's actions and
presents new situations.

State (): A representation of the environment at time .

Action (): A choice made by the agent in state .

Reward (): A scalar feedback signal received after transitioning from to
 due to action .

Policy (): The agent's behavior; a mapping from states to actions (or
distributions over actions).

Goal: Learn a policy that maximizes the expected cumulative discounted
reward (Return).

Return:

Discount factor : trades off immediate vs. future rewards.

S a l e m L a h l o u - M E T I S 2 0 2 5

38 / 111

The Exploration-Exploitation Dilemma

The Core Tension in RL:

Exploitation: Maximize immediate rewards based on current knowledge

Exploration: Gather information to potentially find better strategies

Urban Delivery Robot Example:

Exploitation: Always take shortest known path to package and delivery

Exploration: Try alternative routes to potentially discover faster paths

Why This Matters:

Too much exploitation → Suboptimal behavior, may miss better solutions

Too much exploration → Excessive "wandering," inefficient learning

Finding this balance is critical for effective RL

The Probabilistic View will give us principled tools to address this challenge
through uncertainty quantification.

S a l e m L a h l o u - M E T I S 2 0 2 5

39 / 111

Core Characteristics & Challenges in RL

1. Optimization:

The ultimate goal is to find a strategy (policy) that leads to the best possible
long-term outcomes.

This involves maximizing a cumulative utility function.

2. Delayed Consequences (Credit Assignment):

Actions taken now can have significant impacts on rewards received later.

Unlike supervised learning, feedback (rewards) can be sparse and temporally
distant from the actions that caused them.

3. Exploration vs. Exploitation:

The agent must learn about its environment by interacting with it.

It cannot know what would have happened if it took a different action
(counterfactual) without trying.

4. Generalization:

The ability to perform well in novel states or situations not encountered
during training is crucial.

This allows knowledge to be transferred across related but different scenarios.

A key aspect of intelligence that distinguishes true learning from
memorization, especially vital for Deep RL.

S a l e m L a h l o u - M E T I S 2 0 2 5

40 / 111

The Urban Delivery Robot MDP (5x5 Grid) S a l e m L a h l o u - M E T I S 2 0 2 5

41 / 111

Markov Decision Processes (MDPs)

A mathematical framework for modeling decision-making in situations where
outcomes are partly random and partly under the control of a decision-maker.

Markov Property: The future is independent of the past given the present.

The current state captures all relevant information from the history.

Robot Example (Urban Delivery Robot): Its next state depends only on its
current (location, battery, package status) and chosen action, not how it got
there.

Components of an MDP:

: A finite set of states.

: A finite set of actions (or for actions available in state).

: State transition probability function. .

: Reward function. Expected reward after transitioning from to
due to action .

: Discount factor, .

S a l e m L a h l o u - M E T I S 2 0 2 5

42 / 111

Policies and Value Functions
Policy (): A mapping from states to probabilities of selecting each possible
action.

Deterministic policy: .

Stochastic policy: .

Robot Example (Urban Delivery Robot): A policy might tell it to move "Up" if
its battery is high and it doesn"t have the package, and "Right" if it has the
package and is near the delivery location.

State-Value Function (): The expected return starting from state and
following policy .

.

Measures "how good" it is to be in state under policy .

Action-Value Function (): The expected return starting from state ,
taking action , and thereafter following policy .

.

Measures "how good" it is to take action in state under policy .

These concepts form the foundation for different families of RL algorithms

S a l e m L a h l o u - M E T I S 2 0 2 5

43 / 111

Reinforcement Learning Algorithm Taxonomy

Policy-Based Methods:

Directly learn the policy function

Examples: REINFORCE, PPO, SAC (actor component)

Advantages: Can learn stochastic policies, natural for continuous actions

Challenges: Often high variance, sample inefficient without value functions

Value-Based Methods:

Learn value functions (or), derive policy

Examples: Q-learning, DQN, SARSA

Advantages: Often more sample efficient, lower variance

Challenges: Harder for continuous actions, typically produce deterministic
policies

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

S a l e m L a h l o u - M E T I S 2 0 2 5

44 / 111

Disclaimer

The next 10 slides are math-heavy.

If

this is not your cup of tea, and you like it that way,

of you are already familiar with the theory of MDPs,

then let's meet again in Slide 56.

If

like me, you need to (think you) understand every mathematical detail to (have
the impression you) understand algorithms

then give me your attention for the next few minutes, it's going to be worth it

S a l e m L a h l o u - M E T I S 2 0 2 5

45 / 111

Bellman Equations

Recursive relationships that decompose value functions into immediate reward plus
discounted value of the next state.

Bellman Expectation Equation for :

.

Robot Example (Urban Delivery Robot): The value of being at (0,0) is the
average (over its possible actions and their outcomes) of the immediate reward
plus the discounted value of where it ends up.

Bellman Expectation Equation for :

.

Can also be written as: .

S a l e m L a h l o u - M E T I S 2 0 2 5

46 / 111

Proof of Bellman Expectation Equation

The value function for a state under a deterministic policy can be
derived as follows:

The proofs in the stochastic policy case, and for Q-values, are similar.

S a l e m L a h l o u - M E T I S 2 0 2 5

47 / 111

Banach Fixed-Point Theorem

A crucial mathematical tool for proving convergence in dynamic programming and
RL is the Banach Fixed-Point Theorem.

This theorem is key to showing that iterative applications of Bellman operators
converge to the true value functions.

S a l e m L a h l o u - M E T I S 2 0 2 5

Banach Fixed-Point Theorem:
Given a complete normed vector space (e.g., with a norm), and a
mapping .
If is a contraction mapping, meaning for all :

for some constant (the contraction factor),
then:

1. has a unique fixed point such that .

2. For any initial , the sequence converges to this unique
fixed point .

“
“

48 / 111

Bellman Expectation Operator () is a Contraction

Let be a vector of state values in . The Bellman expectation operator for a
policy is defined as:

Or in vector form: .

Theorem: The Bellman expectation operator is a contraction mapping under the
max-norm () with contraction factor .

S a l e m L a h l o u - M E T I S 2 0 2 5

49 / 111

Proof

Theorem: The Bellman expectation operator is a contraction mapping under the
max-norm () with contraction factor .

Proof:
For any two value vectors :

Since , is a contraction. By Banach's theorem, iterative application
 converges to a unique fixed point, which is .

S a l e m L a h l o u - M E T I S 2 0 2 5

50 / 111

Policy Iteration Algorithm

Policy Iteration (PI) is an algorithm that finds an optimal policy by alternating
between two steps:

1. Initialize: Start with an arbitrary policy .

2. Repeat for , until the policy is stable and no longer improves:

(a) Policy Evaluation:

Given the current policy , compute its state-value function .

This is done by solving the Bellman expectation equation:

(This can be solved iteratively using which converges because
 is a contraction, or by solving a system of linear equations).

(b) Policy Improvement:

Improve the policy by creating a new policy that acts greedily with
respect to :

This is equivalent to choosing that maximizes .

S a l e m L a h l o u - M E T I S 2 0 2 5

51 / 111

Convergence of Policy Iteration

Theorem: Policy Iteration is guaranteed to converge to an optimal policy and
in a finite number of iterations for a finite MDP.

Proof Outline:

1. Policy Evaluation Converges:

We have already seen that PE converges because is a contraction.

2. Policy Improvement Theorem:

The theorem states that for all .

If is not optimal, then there must be at least one state where
, implying a strict improvement.

S a l e m L a h l o u - M E T I S 2 0 2 5

52 / 111

Bellman Optimality Equations

For the optimal policy , the value functions satisfy the Bellman optimality
equations.

Optimal State-Value Function (): .

.

Optimal Action-Value Function ():

.

.

If we know , the optimal policy is to choose the action that maximizes
:

.

S a l e m L a h l o u - M E T I S 2 0 2 5

53 / 111

Bellman Optimality Operator () & Value Iteration
Convergence

The Bellman optimality operator is defined as:

Theorem: The Bellman optimality operator is a contraction mapping under the
max-norm with contraction factor .

S a l e m L a h l o u - M E T I S 2 0 2 5

54 / 111

Proof

Theorem: The Bellman optimality operator is a contraction mapping under the
max-norm with contraction factor .

Proof Sketch: For any :

Trick:

S a l e m L a h l o u - M E T I S 2 0 2 5

55 / 111

Value Iteration
1. The optimal value function is a fixed point of , i.e., . (This is

Bellman's Optimality Equation).

2. Since is a contraction mapping with , by Banach's Fixed-Point
Theorem:

 has a unique fixed point. This unique fixed point must be .

The sequence generated by Value Iteration, , converges to for
any initial .

3. Algorithm:

Initialize however you want (zeros for example)

Repeat until there is no much change:

Extract the optimal policy :

For each state :

We have now derived two algorithms (PI and VI) to provably solve RL problems
when the world model is known !

S a l e m L a h l o u - M E T I S 2 0 2 5

56 / 111

Model-Free RL: Temporal Difference (TD) Learning

When the model (,) is unknown, we learn directly from
experience samples .

Temporal Difference (TD) Learning:

Learns from incomplete episodes by "bootstrapping": updating value estimates
based on other learned estimates: often more sample efficient than methods that
wait for full episode returns.

Does not require waiting until the end of an episode to update values.

TD(0) Update for State-Values ():
After observing a transition :

: Learning rate.

TD Error (): The difference between the TD
target and the current estimate . The update moves towards the
TD target.

S a l e m L a h l o u - M E T I S 2 0 2 5

57 / 111

Model-Free RL: Q-Learning for Action-Values

Q-Learning (Off-Policy TD Control):

Learns the optimal action-value function, , directly.

Update Rule for Action-Values ():
After observing a transition :

The agent learns about the greedy policy (by using in the
target) while potentially following a different behavior policy to collect data
(off-policy).

Once is learned, the optimal policy is to choose that maximizes
.

S a l e m L a h l o u - M E T I S 2 0 2 5

58 / 111

Deep Q-Learning

Function Approximation with Neural Networks:

In complex problems with large state/action spaces, representing or
as tables is infeasible.

Neural Networks can be used as powerful function approximators:

State-value approximation:

Action-value approximation:

The parameters of the neural network are updated using methods like gradient
descent to minimize the error between the network's output and the TD targets.

For V-values: Minimize

For Q-values: Minimize

This allows RL to scale to problems with continuous or very large discrete state
spaces.

S a l e m L a h l o u - M E T I S 2 0 2 5

59 / 111

Exploration Strategies: Examples
Simple Strategies:

-greedy: With probability , choose the greedy action (exploit); with
probability , choose a random action (explore). can be annealed over time.

Optimistic Initialization: Initialize Q-values to high values to encourage
trying all actions initially.

More Advanced Strategies (often leveraging uncertainty):

Probability Matching / Thompson Sampling (Posterior Sampling): Maintain a
posterior distribution over Q-values (or model parameters). Sample an action
according to its probability of being optimal.

Intrinsic Motivation / Curiosity: Add internal rewards for visiting novel
states or for actions that lead to surprising outcomes (high prediction error of
a learned dynamics model).

MaxEnt RL (discussed later): Entropy term in the objective naturally
encourages exploration.

S a l e m L a h l o u - M E T I S 2 0 2 5

60 / 111

The Atari games milestone S a l e m L a h l o u - M E T I S 2 0 2 5

61 / 111

Q-Learning: Challenges & The Deadly Triad
Q-Learning Update Rule (recap):

.

Challenges with Function Approximation (e.g., Neural Networks):

When Q-functions are approximated (e.g.,), convergence is not
always guaranteed, especially with off-policy learning and bootstrapping.

The Deadly Triad: The combination of:

1. Function Approximation (e.g., linear, neural networks)

2. Bootstrapping (updating estimates based on other estimates)

3. Off-policy training (learning about a policy different from the one used to
generate data)
...can lead to instability and divergence of value estimates.

DQN introduced techniques (experience replay, target networks) to mitigate
these issues for deep NNs.

S a l e m L a h l o u - M E T I S 2 0 2 5

62 / 111

Deep Q-Networks (DQN)
Combines Q-Learning with deep neural networks to approximate .

Addresses challenges of using NNs with RL (non-stationarity, correlated samples,
deadly triad).

Innovations:

1. Experience Replay: Store transitions in a replay buffer . Sample
minibatches randomly from to train the Q-network. Breaks correlations,
reuses data.

2. Target Network: Use a separate target Q-network for calculating
TD targets. Its weights are periodically copied from the online Q-network
or slowly tracked. Stabilizes training.

Loss Function (for updating):

, where target

.

Achieved human-level performance on Atari games from raw pixel inputs.

S a l e m L a h l o u - M E T I S 2 0 2 5

63 / 111

DQN Architecture Example

Input: State representation (e.g., raw pixels from a game screen, or features like
robots (x,y,battery,package) status).

Network Body: Typically convolutional layers for image inputs, followed by fully
connected layers.

Output: A vector of Q-values, one for each possible discrete action in the current
state.

The action with the highest Q-value is chosen by the greedy policy.

S a l e m L a h l o u - M E T I S 2 0 2 5

64 / 111

Policy Gradient Methods: Overview
Directly learn the parameters of a policy .

Optimize an objective .

Update parameters by ascending the gradient .

Policy Gradient Theorem:

.

Often use (return from time) or or Advantage
 as the weighting factor.

.

REINFORCE Algorithm: A basic Monte Carlo policy gradient method.

S a l e m L a h l o u - M E T I S 2 0 2 5

65 / 111

Actor-Critic Methods & Types (A2C/A3C)
Combine policy gradients with learned value functions.

Actor: The policy , decides which action to take.

Critic: The value function (e.g., or), evaluates the actions
taken by the actor.

The critic estimates the return or advantage, providing a lower variance gradient
signal for the actor.

Actor update: .

Critic update (e.g., for): , where
.

Advantage Actor-Critic (A2C): Synchronous version, waits for all actors to
finish before updating.

Asynchronous Advantage Actor-Critic (A3C): Uses multiple parallel actors with
local copies of the model, updating a global model asynchronously. Can be more
efficient.

S a l e m L a h l o u - M E T I S 2 0 2 5

66 / 111

Proximal Policy Optimization (PPO)
A state-of-the-art policy gradient method known for its stability and sample
efficiency.

Aims to take the largest possible improvement step on the policy per iteration
without stepping too far and causing performance collapse.

Clipped Surrogate Objective:

Let be the probability ratio.

.

 is an estimator of the advantage function.

The clipping discourages large policy updates.

Full PPO Objective (often includes):

.

: Value function error term (e.g., squared error).

: Entropy bonus to encourage exploration.

S a l e m L a h l o u - M E T I S 2 0 2 5

67 / 111

From Traditional to Probabilistic RL

Limitations of Traditional RL Approaches:

Exploration is often heuristic (e.g., -greedy)

Handling uncertainty is typically implicit

Standard approaches can converge to brittle deterministic policies

The "deadly triad" issues with function approximation

What a Probabilistic Perspective Offers:

Principled treatment of different uncertainty types (aleatoric vs. epistemic)

Explicit modeling of beliefs and their updates

Natural exploration through information-seeking behavior

Theoretical connections to other fields (Bayesian inference, information
theory)

More robust, stochastic policies with built-in exploration

How can we formally frame RL as probabilistic inference?

S a l e m L a h l o u - M E T I S 2 0 2 5

68 / 111

Section 4: Reinforcement Learning Through a Probabilistic Lens S a l e m L a h l o u - M E T I S 2 0 2 5

69 / 111

Standard RL vs. MaxEnt RL Objectives

Standard RL Objective: Maximize expected cumulative reward.

.

Focuses solely on exploiting known high-reward paths once discovered.

Can lead to deterministic, potentially brittle policies.

Maximum Entropy (MaxEnt) RL Objective: Maximize expected cumulative
reward AND policy entropy.

.

 is the policy entropy.

Temperature balances reward vs. entropy (randomness/exploration).

Encourages policies that are not only high-rewarding but also explore diverse
behaviors and are less predictable.

Leads to "softer" policies that assign non-zero probability to multiple good
actions.

S a l e m L a h l o u - M E T I S 2 0 2 5

70 / 111

Control as Probabilistic Inference: The Core Idea
Traditional View: RL maximizes rewards. Inference finds probable explanations.

Probabilistic View: Frame RL as an inference problem in a specific graphical
model.

Goal: Infer actions that are likely to be optimal.

Introduce binary optimality variables for each time step .

 signifies that the state-action pair is part of an "optimal"
trajectory.

We need a way to define based on rewards. (More on this
next!)

The overall task becomes computing the posterior probability of actions given
that they are optimal: .

S a l e m L a h l o u - M E T I S 2 0 2 5

71 / 111

Defining an "Optimality Score"

We assign a score (or potential) for this event, based on the immediate
reward :

(Note: We use the "P" notation here by convention from the literature. Think of
this as an unnormalized score that reflects preference.)

Interpreting this Score:

Relative Preference: Higher rewards lead to exponentially higher
scores, strongly preferring better actions.

Not a Standalone Probability: This score doesn't have to be . Its role is to
contribute to a larger model. Properly normalized probabilities (that sum to 1)
will emerge later when we consider all alternative actions and trajectories.

Role of Temperature ():

Controls the "softness" of preference:

Small : Scores become very sensitive to reward differences (near-
deterministic preference for the best).

Large : Scores are less sensitive, allowing more stochasticity and
exploration.

S a l e m L a h l o u - M E T I S 2 0 2 5

72 / 111

The Graphical Model for Control as Inference

Model Components:

States , Actions .

Dynamics: .

Optimality variables .

Prior over actions (can be uniform if not specified).

Joint Probability (Trajectory):

.

.

The most probable trajectory under this posterior is one that is dynamically
feasible and has high cumulative reward.

S a l e m L a h l o u - M E T I S 2 0 2 5

73 / 111

Aside: Probabilistic Graphical Models (PGMs)
Recap: In the first part of our talk, we discussed how probability helps us
quantify uncertainty and update beliefs (e.g., using Bayes' Rule for a few
variables).

PGMs: Scaling Up Probabilistic Reasoning:

PGMs are a visual language for representing complex probabilistic
relationships among many random variables.

Nodes: Represent random variables (e.g., states , actions , optimality).

Edges (Arrows/Lines): Represent probabilistic dependencies.

Directed edges: Indicate influences (e.g.,).

Why use them?

Structure: Clearly visualize problem assumptions.

Modularity: Break down complex systems.

Efficient Reasoning: Enable algorithms like message passing for inference.

Our RL problem, with states, actions, and optimality, is modeled as such a PGM!

S a l e m L a h l o u - M E T I S 2 0 2 5

74 / 111

Aside: Inference in PGMs – Asking Questions
Once we have a PGM, we use it to answer questions – this is probabilistic
inference.

Typical Goal: Compute the
probability distribution of some
hidden (unobserved) variables, given
some observed variables (evidence).

Example:

In our RL context:

Common Inference Tasks:

Marginal Inference: – Probability of a specific variable .

Maximum A Posteriori (MAP) Inference: – Most likely
configuration.

The Challenge: Brute-force inference (summing/maximizing over all possibilities)
is often computationally intractable.

Solution: Efficient algorithms like Message Passing.

S a l e m L a h l o u - M E T I S 2 0 2 5

75 / 111

Aside: Message Passing for PGM Inference
The Intuition: Variables in the PGM
"talk" to their neighbors.

They exchange "messages"
(summaries of information or
beliefs)

Each message a node sends
summarizes what it has learned
from all other neighbors

How it Works (Conceptually):

Local computations at each node based on received messages and local factors

Messages are passed along the graph's edges

Eventually, each node computes its updated belief (posterior probability)

Main Algorithms:

Belief Propagation (Sum-Product): Computes exact marginals in tree-
structured graphs

Max-Product: Finds MAP configuration

The "backward messages" we'll see in RL are a specific type of message

S a l e m L a h l o u - M E T I S 2 0 2 5

76 / 111

Backward Messages & The Emergence of Soft Values

Goal Recap: We want to find optimal actions by computing .
This requires understanding the value of states through backward message
passing.

Backward Messages (): These messages quantify , the
probability of all future steps being optimal (from time to), given current
state .

Recursive Calculation:

(Here, is a prior policy, e.g., uniform. We define the soft value
).

This Recursion as a Soft Value Update:
Substituting and taking of both sides, we get:

This equation for is a form of the soft Bellman equation.

S a l e m L a h l o u - M E T I S 2 0 2 5

77 / 111

The Soft Bellman Connection

Recall: Standard Bellman Backup
(e.g., Bellman Expectation with)

Our Soft Value Update (from previous
slide):

where the soft action-value is:

Optimal Policy ():

The optimal policy is derived from the terms that
make up :

This simplifies using the soft Q-value:

S a l e m L a h l o u - M E T I S 2 0 2 5

78 / 111

Benefits of the Control as Inference View
Unified Framework: Provides a common mathematical language for RL, control,
and probabilistic modeling.

Principled Derivation of Algorithms: Many RL algorithms (Value Iteration,
Policy Iteration, some policy gradients) can be re-derived as inference
procedures.

Natural Exploration: Entropy term in MaxEnt RL (from variational inference)
encourages exploration.

Robustness: MaxEnt policies can be more robust to model inaccuracies and
noise.

Compositionality & Hierarchy: PGMs offer tools for building more complex,
structured models (e.g., hierarchical RL).

Inverse RL: If rewards are unknown, they can be inferred by assuming expert
trajectories are samples from .

Partially Observed MDPs (POMDPs): Inference naturally extends to hidden
states.

Multi-modality: Can learn multi-modal policies (multiple ways to solve a task)

S a l e m L a h l o u - M E T I S 2 0 2 5

79 / 111

Maximum Entropy Reinforcement Learning

Objective: Maximize the standard RL objective augmented with an entropy term.

.

 is the entropy of the policy at state .

Achieving this Objective: The Probabilistic Inference Connection:

The principles of MaxEnt RL are deeply connected to the control as
probabilistic inference framework.

The soft value functions () and soft Bellman equations that

emerge from that inference process (e.g., using
and backward messages) are precisely the value functions for policies
optimizing this reward + entropy objective.

The optimal stochastic policy derived in that framework, typically a
Boltzmann policy of the form , naturally
maximizes cumulative reward while also maintaining high entropy, fulfilling
the MaxEnt objective.

The temperature parameter is the same crucial element in both: it balances
exploitation (reward) and exploration (entropy) in the objective, and it dictates
the stochasticity of the optimal policy and the "softness" of the value
functions.

S a l e m L a h l o u - M E T I S 2 0 2 5

80 / 111

Comparing Traditional and Probabilistic RL

Aspect Traditional RL Probabilistic/MaxEnt RL

Policy Type Often deterministic Naturally stochastic

Exploration
Typically separate mechanism (e.g., -
greedy)

Integrated via entropy/uncertainty

Objective Maximize expected return
Maximize return +
entropy/information

Uncertainty Implicit or absent Explicitly modeled

Sample
Efficiency

Often requires more samples
Can be more efficient with good

priors

Robustness May find brittle solutions Often more robust to perturbations

Computation Generally lighter Often more computational overhead

Examples DQN, A3C Soft Actor-Critic

The probabilistic approach often trades increased computational complexity for
better exploration, robustness, and uncertainty handling.

S a l e m L a h l o u - M E T I S 2 0 2 5

81 / 111

Summary: Soft Value Functions in MaxEnt RL

Soft State-Value Function ():

.

Soft Action-Value Function ():

Bellman equation for :

.

Optimal Soft Policy: .

This is a Gibbs/Boltzmann distribution. Higher Q-values get exponentially
more probability.

S a l e m L a h l o u - M E T I S 2 0 2 5

82 / 111

Soft Actor-Critic (SAC): Overview
An off-policy actor-critic algorithm based on the MaxEnt RL framework.

Aims for high sample efficiency and stability.

Key Components:

1. Stochastic Actor (Policy): Learns a policy that maximizes reward +

entropy.

2. Critic(s) (Soft Q-functions): Estimate soft Q-values.

3. Value Function (): Often implicitly defined or learned separately (original
SAC had a separate V-net).

4. Replay Buffer: For off-policy learning.

5. Target Networks: For stabilizing Q-function and Value function learning.

S a l e m L a h l o u - M E T I S 2 0 2 5

83 / 111

Examples S a l e m L a h l o u - M E T I S 2 0 2 5

84 / 111

From Theory to Advanced Applications

How Probabilistic Foundations Enable Modern Advances:

Uncertainty-aware decision making → Critical for real-world robustness

Probabilistic policies → Better exploration for complex environments

Inference framework → Natural extensions to preference learning, offline
data

Modern Applications:

Model-based RL benefits from explicit uncertainty in dynamics models

Multi-agent RL requires reasoning about other agents' uncertain behaviors

S a l e m L a h l o u - M E T I S 2 0 2 5

85 / 111

Section 5: Recent Developments & Advanced Topics S a l e m L a h l o u - M E T I S 2 0 2 5

86 / 111

Reinforcement Learning from Human Feedback
A technique to align powerful models (especially LLMs) with human preferences.

Core Idea: Use human feedback to train a reward model, then use RL to optimize
the base model against this learned reward.

Typical RLHF Process for LLMs:

1. Supervised Fine-Tuning (SFT): Fine-tune a pre-trained LLM on a dataset of
high-quality human-written demonstrations (e.g., desired responses to
prompts).

2. Reward Modeling (RM):

Collect human preference data: Present humans with multiple model
outputs for the same prompt and ask them to rank them or choose the best.

Train a separate reward model to predict human preference scores given a
prompt and a response. Input: (prompt, response), Output: scalar reward.

3. RL Optimization: Use an RL algorithm (commonly PPO) to fine-tune the SFT
model.

S a l e m L a h l o u - M E T I S 2 0 2 5

87 / 111

LLMs and Reinforcement Learning
Alignment: RLHF is a primary method for aligning LLMs to be helpful, harmless,
and honest.

Improving Capabilities / Agency:

Tool Use: Training LLMs to use external tools (calculators, search engines,
APIs) via RL by rewarding successful tool invocation and task completion.

Interactive Agents: Developing LLM-based agents that can plan and act in
simulated or real environments (e.g., web navigation, game playing) using RL to
learn policies.

Dialogue Systems: Optimizing dialogue flow, coherence, and user satisfaction
using RL.

But how to pick the right scores/rewards?

S a l e m L a h l o u - M E T I S 2 0 2 5

88 / 111

Preferences are more natural (1/2)

Prompt: Mohammed VI Polytechnic University Rabat campus

S a l e m L a h l o u - M E T I S 2 0 2 5

89 / 111

Preferences are more natural (2/2)

Prompt: The International Conference on Networked Systems in Rabat,
Morocco, ghibli style

https://lmarena.ai/ (Chatbot Arena (formerly LMSYS): Free AI Chat to Compare &
Test Best AI Chatbots)

S a l e m L a h l o u - M E T I S 2 0 2 5

90 / 111

https://lmarena.ai/

Preference Optimization (e.g., DPO)
Direct Preference Optimization (DPO): An alternative to the RM+RL pipeline in
RLHF.

Core Idea: Directly optimize the policy to satisfy human preferences, bypassing
the explicit reward modeling step.

Derives a loss function directly from preference pairs (winner, loser
responses for a prompt).

The DPO loss encourages the policy to assign higher probability to preferred
responses and lower probability to dispreferred responses , relative to a
reference policy (often the SFT model).

.

 is a temperature parameter.

Advantages: Simpler than the multi-stage RLHF pipeline, can be more stable.

S a l e m L a h l o u - M E T I S 2 0 2 5

91 / 111

Preference Optimization on Reasoning Traces

PORT: Preference Optimization on Reasoning Traces - Salem Lahlou*, Abdalgader
Abubaker*, Hakim Hacid, NAACL 2025

S a l e m L a h l o u - M E T I S 2 0 2 5

92 / 111

Examples and Results

prompt (GSM8K question + answer
start)

chosen rejected(1) rejected(2)

Natalia sold clips to 48 of her friends in
April, and then she sold half as many
clips in May. How many clips did
Natalia sell altogether in April and
May? Natalia sold 48/2 = 24 clips in May.

Natalia sold
48+24 = 72 clips

altogether in
April and May.

Natalia sold 25+98
= 12 clips

altogether in April
and May.

Natalia sold

24 clips in
April.

Model GSM8K AQuA ARC LastLetterConcat

Base model 54.66 31.50 76.11 16.67

SFT 55.43 30.71 75.60 17.34

DPO (ours) 58.91 35.04 76.02 18.67 (+12%)

Model GSM8K AQuA ARC

Base model 54.66 31.50 76.11

SFT on AQUA 54.89 31.50 75.68

DPO - digit corr. 57.70 37.40 (+18.73%) 76.88

DPO - Llama-7B 55.57 33.86 76.71

S a l e m L a h l o u - M E T I S 2 0 2 5

93 / 111

Model-Based Reinforcement Learning
Core Idea: Learn a model of the environment's dynamics and rewards

, then use this learned model for planning or policy learning.

Contrast with Model-Free RL: Model-free methods learn policies or value
functions directly from experience without explicitly learning a model.

Advantages:

Sample Efficiency: Can be much
more sample efficient if the model
is accurate, as simulated experience
from the model is "cheaper" than
real-world interaction.

Interpretability: The learned
model can sometimes provide
insights into the environment.

Disadvantages/Challenges:

Model Error: If the learned model
is inaccurate (model bias), the
policy learned from it can be
suboptimal or even catastrophic
(compounding errors).

Computational Cost: Learning and
using a model can be
computationally intensive.

S a l e m L a h l o u - M E T I S 2 0 2 5

94 / 111

Offline Reinforcement Learning (Batch RL)
Core Idea: Learning policies from a fixed, previously collected dataset of
experience, without any further interaction with the environment.

Motivation: Many real-world scenarios where active data collection is
expensive, risky, or unethical (e.g., healthcare, robotics, autonomous driving from
existing logs).

Main Challenge:

Counterfactual Queries: Cannot query the environment for what would have
happened if a different action was taken.

Key Ideas & Methods:

Policy Constraint / Regularization: Constrain the learned policy to stay close
to the behavior policy that generated the data.

Importance Sampling (with care): Can be used but suffers from high variance
with large policy deviations.

S a l e m L a h l o u - M E T I S 2 0 2 5

95 / 111

Multi-Agent Reinforcement Learning (MARL)

Core Idea: Multiple agents learning simultaneously in a shared environment,
where each agent's actions can affect others and the overall system dynamics.

Applications: Robotics teams, autonomous vehicle coordination, game playing
(e.g., StarCraft, Dota), economic modeling.

Main Challenges:

Non-Stationarity: From any single
agent's perspective, the environment
is non-stationary because other
agents are also learning and
changing their policies.

Credit Assignment: Difficult to
determine which agent contributed
to a team reward or failure.

Scalability: The joint action space
grows exponentially with the number
of agents.

Coordination vs. Competition:
Agents might need to cooperate,
compete, or a mix of both.

S a l e m L a h l o u - M E T I S 2 0 2 5

96 / 111

RL in the Real World: Controlling Fusion Plasma

The Quest: Sustainable Fusion Energy

Tokamaks: Toroidal devices that use
powerful magnetic fields to confine
and heat plasma to millions of degrees
Celsius – hot enough for fusion to
occur.

Goal: A clean, virtually limitless
energy source.

The Grand Challenge: Plasma Control

Extreme Conditions: Plasma at >100 million °C must be precisely shaped and
positioned, avoiding contact with vessel walls.

Instabilities: Plasma is inherently unstable and can be lost in milliseconds if not
perfectly controlled.

High-Dimensional Actuation: Dozens of magnetic coils must be adjusted
thousands of times per second.

Complexity: Different plasma shapes (configurations) are needed for research
and optimizing fusion performance. Designing controllers for each is a massive
engineering effort with traditional methods.

S a l e m L a h l o u - M E T I S 2 0 2 5

97 / 111

Deep RL Tames the Tokamak

How RL Was Used (Degrave et al. (Deepmind), Nature 2022):

The Agent: A deep reinforcement learning algorithm (an actor-critic model)
learned to control all 19 magnetic coils of the Tokamak à Configuration Variable
(TCV) in Switzerland.

Training:

The RL agent was trained in a high-fidelity simulator that modeled plasma
dynamics.

Reward Function: Defined by high-level objectives: achieving specific plasma
shapes, current, position, and maintaining stability. Penalties for hitting
constraints or undesired states.

The agent learned a neural network mapping sensor readings and target
shapes to coil voltage commands.

Is This "Really Real World"? Absolutely.

Physical Deployment: The learned controller was directly deployed on the
actual TCV tokamak ("zero-shot" transfer from simulation).

S a l e m L a h l o u - M E T I S 2 0 2 5

98 / 111

Challenges and Open Problems in RL
Sample Efficiency: Many algorithms still require vast amounts of data. How can
we learn effectively from fewer interactions?

Exploration vs. Exploitation: Efficiently exploring large state-action spaces
remains hard. Developing smarter exploration strategies is key.

Generalization & Transfer Learning: Policies learned for one task often don"t
transfer well to even slightly different tasks or environments. How to create
more adaptable agents?

Reward Design: Crafting good reward functions is often difficult and crucial for
success (reward engineering). Can we learn rewards or use preferences more
effectively?

Safety and Robustness: Ensuring learned policies are safe, reliable, and robust
to adversarial perturbations or unexpected situations. Critical for real-world
deployment.

Scalability: Applying RL to very high-dimensional state/action spaces or long-
horizon problems.

Interpretability: Understanding why an RL agent makes certain decisions.
Opening the "black box".

Credit Assignment: Determining which actions in a long sequence were
responsible for good/bad outcomes, especially with sparse rewards.

S a l e m L a h l o u - M E T I S 2 0 2 5

99 / 111

Research Platforms: Minigrid & BabyAI

MiniGrid - Chevalier-Boisvert, ...,
Lahlou, et al., Neurips 2023

Lightweight & customizable grid-
worlds.

For general RL research:

Goal-oriented tasks.

Hierarchical missions.

Tunable difficulty for curriculum
learning.

BabyAI - Chevalier-Boisvert, ..., Lahlou,
et al., ICLR 2018

Built on Minigrid.

Focus: Grounded language learning.

Tasks via synthetic natural language
instructions (e.g., "put the ball next to
the box").

Studies how agents connect language
to actions & perception.

Flexible platforms for investigating complex RL challenges like planning, memory,
and language understanding, studying exploration, sample efficiency,
generalization, safety, etc..

S a l e m L a h l o u - M E T I S 2 0 2 5

100 / 111

Section 6: Conclusion & Future Directions S a l e m L a h l o u - M E T I S 2 0 2 5

101 / 111

Summary: RL Through a Probabilistic Lens
We've journeyed from fundamental ML concepts to core RL principles,
emphasizing a probabilistic interpretation.

Viewing RL as probabilistic inference (Control as Inference, MaxEnt RL like SAC)
offers:

A unifying theoretical framework.

Principled ways to handle uncertainty and derive algorithms.

Enhanced exploration and robustness.

This perspective underpins powerful algorithms like Soft Actor-Critic.

S a l e m L a h l o u - M E T I S 2 0 2 5

102 / 111

Future Directions
Deeper Integration of Probabilistic Models: More sophisticated Bayesian
methods, better uncertainty quantification in deep RL (especially distinguishing
and using aleatoric/epistemic).

Causal RL: Incorporating causal reasoning for better generalization, intervention
understanding, and out-of-distribution robustness.

RL for Scientific Discovery: Using RL to design experiments, discover materials,
control complex systems (e.g., fusion reactors, chemical synthesis). This is at the
core of my current research on Generative Flow Networks, which are cousins of
RL.

Foundation Models for RL: Leveraging large pre-trained models (like LLMs or
Vision Transformers) for better representations, priors, or even as components
of RL agents (e.g., for planning or reward specification).

Addressing Societal Impact: Ensuring fairness, transparency, and safety as RL
systems become more capable and deployed in the real world. Developing ethical
guidelines and robust auditing mechanisms. Awareness of inherent biases
(remember the generated photos about Morocco from earlier?).

S a l e m L a h l o u - M E T I S 2 0 2 5

103 / 111

Thank You!

Questions?

Contact: Salem Lahlou, https://la7.lu

S a l e m L a h l o u - M E T I S 2 0 2 5

104 / 111

https://la7.lu/

References (1/2)
https://www.freecodecamp.org/news/bayes-rule-explained/

https://m0nads.wordpress.com/2022/01/22/muzero/

https://medium.com/data-science/multi-agent-deep-reinforcement-learning-in-
15-lines-of-code-using-pettingzoo-e0b963c0820b

https://www.iaea.org/bulletin/

https://unlocked.microsoft.com/laliga-beyond-stats/

https://blog.biocomm.ai/2023/11/30/12696/

S a l e m L a h l o u - M E T I S 2 0 2 5

105 / 111

https://www.freecodecamp.org/news/bayes-rule-explained/
https://m0nads.wordpress.com/2022/01/22/muzero/
https://medium.com/data-science/multi-agent-deep-reinforcement-learning-in-15-lines-of-code-using-pettingzoo-e0b963c0820b
https://medium.com/data-science/multi-agent-deep-reinforcement-learning-in-15-lines-of-code-using-pettingzoo-e0b963c0820b
https://www.iaea.org/bulletin/
https://unlocked.microsoft.com/laliga-beyond-stats/
https://blog.biocomm.ai/2023/11/30/12696/

References (2/2)
An introduction to apprenticeship learning by teaching an agent how to play a
video game

Reinforcement Learning and Control as Probabilistic Inference: Tutorial and
Review

Probabilistic Machine Learning, Advanced topics

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor

Magnetic control of tokamak plasmas through deep reinforcement learning

Asynchronous Methods for Deep Reinforcement Learning

PORT: Preference Optimization on Reasoning Traces

Minigrid & Miniworld: Modular & Customizable Reinforcement Learning
Environments for Goal-Oriented Tasks

BabyAI: A Platform to Study the Sample Efficiency of Grounded Language
Learning

DEUP: Direct Epistemic Uncertainty Prediction

S a l e m L a h l o u - M E T I S 2 0 2 5

106 / 111

Appendix

Computational Cost Comparison
Q: How much more computationally expensive are probabilistic methods?

A: Typically 1.2-2x the computational cost of traditional methods:

SAC vs. DDPG: ~1.5x training time per iteration

Additional costs from:

Computing entropy/KL terms

Maintaining distribution parameters

Often requiring larger networks

However, may converge in fewer environment interactions, saving time overall

When to Use Traditional vs. Probabilistic RL
Q: When would standard RL be preferable to probabilistic approaches?

A: Standard RL might be better when:

Computational resources are severely constrained

The environment has very limited stochasticity

The task requires a deterministic policy by design

Exploration is easily guided by shaped rewards

The problem is simple enough that exploration issues are minimal

S a l e m L a h l o u - M E T I S 2 0 2 5

107 / 111

Appendix

Scaling to High-Dimensional Problems
Q: How do these methods scale to very high-dimensional problems?

A: Scaling considerations:

Factorized distributions help manage dimensionality (e.g., diagonal covariance
Gaussians)

Function approximation (neural networks) handles high-dimensional state
spaces

For extremely high-dimensional action spaces:

Auto-regressive policies can help

Hierarchical approaches decompose the problem

Latent variable models provide dimensionality reduction

Software and Implementation Resources
Q: What software libraries/frameworks support probabilistic RL well?

A: Recommended resources:

General RL libraries with MaxEnt implementations:

Stable Baselines3, RLlib, torchrl

Probabilistic programming:

TensorFlow Probability, Pyro, PyMC

S a l e m L a h l o u - M E T I S 2 0 2 5

108 / 111

Appendix

Justifying the Exponential Optimality Score

Why This Choice Works So Well:

This specific definition is powerful because of its direct impact on trajectory
probabilities:

The individual scores, , for each step in a trajectory multiply
together.

This means the overall score (or unnormalized probability) for an entire

trajectory becomes proportional to .

Crucially, this links directly to the goal of RL: trajectories with higher
cumulative (summed) rewards are exponentially more likely to be
considered optimal.

Underlying Principle:

This effective exponential form is also consistent with the Principle of
Maximum Entropy.

This principle suggests that if you want to translate rewards into scores in the
most "unbiased" way (specifically, by wanting the log of the score to be
proportional to the reward), the exponential form naturally emerges
(Boltzmann/Gibbs distribution).

S a l e m L a h l o u - M E T I S 2 0 2 5

109 / 111

Appendix

Aside: Example of Message Passing - HMM Chain

Consider variables:

: Hidden state at time

: Observation at time

Forward-Backward Message Passing:

Forward messages:

Belief about current state given past observations

Computed recursively:

Backward messages:

Likelihood of future observations given current state

Computed recursively:

Combining messages:

In our RL context: backward messages represent expected future
optimality/rewards.

S a l e m L a h l o u - M E T I S 2 0 2 5

110 / 111

Appendix

Stochastic Dynamics & Variational Inference

Exact inference is often intractable for stochastic dynamics and continuous
spaces.

Variational Inference: Approximate the true posterior with a
simpler, tractable distribution parameterized by .

Typically, . Here is our
learned policy.

Objective: Minimize .

Equivalent to maximizing the Evidence Lower Bound (ELBO)

More details in "Reinforcement Learning and Control as Probabilistic Inference:
Tutorial and Review" by Sergey Levine

S a l e m L a h l o u - M E T I S 2 0 2 5

111 / 111

