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What’s a GFlowNet?

What it’s not:
a particular Neural Net architecture

What it is:
A generative framework designed to sample combinatorial objects,

with maximal diversity, based on an energy function or a reward function

• Since 2023: sample continuous things as well!

small molecules proteins1 language Causal/Bayesian Networks
(and their conformation)2 (and their parameters)3

1“Scalable protein design using optimization in a relaxed sequence space”, Frank et al., 2024
2“Molecular Graph Generation by Decomposition and Reassembling”, Yamada and Sugiyama,

2023
3https://causaldm.github.io/
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Motivation: Drug Discovery

Motivation: Molecular Search for COVID-19 Therapeutics

• Evaluation method: Physics-based simulation & molecular docking (noisy

and expensive !)

• Challenges:

• Many molecules appear promising in simulation

• Good candidates are scattered across chemical space

• Goal: Select most promising candidates for laboratory testing
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Motivation: Why is diversity Good?

Hidden blind spots

In organic chemistry (and many domains), the proxies we use are fundamentally

imprecise

So we must maintain broad coverage, by searching comprehensively

Source: “Molecular dynamics

simulation ...”, Azamat et al.

2015

Molecular Dynamics can only

do so much!

3



Motivation: Why is diversity Good?

Hidden blind spots

In organic chemistry (and many domains), the proxies we use are fundamentally

imprecise

So we must maintain broad coverage, by searching comprehensively

Source: “GFlowNets for AI-Driven Scientific Discovery”,

Jai et al. 2023

If only one mode is correct, we’d rather

try all 4 than 4 candidates in one mode

Source: “Molecular dynamics

simulation ...”, Azamat et al.

2015

Molecular Dynamics can only

do so much!

3



Motivation: Why is diversity Good?

Hidden blind spots

In organic chemistry (and many domains), the proxies we use are fundamentally

imprecise

So we must maintain broad coverage, by searching comprehensively

Source: “GFlowNets for AI-Driven Scientific Discovery”,

Jai et al. 2023

If only one mode is correct, we’d rather

try all 4 than 4 candidates in one mode

Source: “Molecular dynamics

simulation ...”, Azamat et al.

2015

Molecular Dynamics can only

do so much!

→ Systematic generalization: With only 3 modes discovered, an ideal model should

learn to generate data from the fourth mode.
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Motivation: Existing Approaches

• Reinforcement Learning

• Framework: MDP with actions and rewards

• Challenge: Exploration remains a complex, unsolved problem

• Result: Limited diversity in discovered solutions

• Markov Chain Monte Carlo

• Challenge: Prohibitively slow mode mixing in practice

• Generative Models (GANs/VAEs/Diffusion)

• Limitation: Don’t fully utilize scalar reward signals
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Introducing GFlowNets

• GFlowNets are a method for sampling from a desired distribution by

learning a flow (to be defined a in a few slides) in a Directed Acyclic Graph

(DAG).

Figure from Emmanuel Bengio’s tutorial at the Mila GFlowNet workshop, 2023

• Natural fit for combinatorial spaces (e.g., molecules, graphs, natural

language).

• Specifically designed to address the limitations of other methods.
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Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).

• S is the set of states, including special initial state s0 and sink state sf .
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Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).
• S is the set of states, including special initial state s0 and sink state sf .

(Warning: Some authors prefer not to use sf . The math is equivalent.)
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Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

Given local distributions (the policy) PF (s
′ | s), we can define probability distributions

over trajectories:

PF (s0 → s1 → . . .→ sn → sn+1 = sf ) =
n∏

i=0

PF (si+1 | si )

• Learning Goal: Given a DAG G, and a reward function R, find a policy PF such
that the terminating state distribution satisfies for all sn ∈ X :

P⊤
F (sn) :=

∑
τ∈T : τ ends in sn→sf

PF (τ) =
R(sn)∑
x∈X R(x)

.
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Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

Given local distributions (the policy) PF (s
′ | s), we can define probability distributions

over trajectories:

PF (s0 → s1 → . . .→ sn → sn+1 = sf ) =
n∏

i=0

PF (si+1 | si )

• Learning Goal: Given a DAG G, and a reward function R, find a policy PF such
that the terminating state distribution satisfies for all sn ∈ X :

P⊤
F (sn) :=

∑
τ∈T : τ ends in sn→sf

PF (τ) =
R(sn)∑
x∈X R(x)

.

We do this via flows: a function F : A → R≥0 that defines PF (s
′ | s) =

F (s→s′)∑
s′′∈Ch(s)

F (s→s′′) .
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Sampling Procedure

Algorithm 1 Sampling from a trained GFlowNet

Input: Edge flows F (s → s ′) for all edges.

s ← s0 (Start at the initial state)

While s ̸= sf :

• Compute PF (s
′|s) = F (s→s′)∑

s′′∈Child(s) F (s→s′′) for all children s ′ of s.

• Sample s ′ ∼ PF (s
′|s)

• s ← s ′

Return s
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Main Result

An edge-flow function F : A→ R≥0 satisfies:

• the flow-matching conditions, if:

∀s ′ ̸= s0, sf ,
∑

s∈Par(s′)

F (s → s ′) =
∑

s′′∈Child(s′)

F (s ′ → s ′′)

• the reward-matching conditions, if:

∀s ∈ X = Par(sf ), F (s → sf ) = R(s)

F is then said to be a valid flow.
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• the flow-matching conditions, if:

∀s ′ ̸= s0, sf ,
∑

s∈Par(s′)

F (s → s ′) =
∑

s′′∈Child(s′)

F (s ′ → s ′′)

• the reward-matching conditions, if:

∀s ∈ X = Par(sf ), F (s → sf ) = R(s)

F is then said to be a valid flow.

Let F be a valid flow. Then, Algorithm 1 samples states s ∈ X with

probabilities proportional to R(s). In other words, there exists a constant

α > 0 such that the probability of sampling s ∈ X is αR(s).

Naturally, α−1 =
∑

s∈X R(s) is the unknown partition function.
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Proof - Setup

• Goal:Prove that the sampling procedure samples states in X
proportionally to their rewards.

• Strategy:We’ll use strong induction on the maximum depth of a state, to

show that ∀s ∈ S,
∑

τ ending in s P(τ) = α
∑

s′∈Child(s) F (s → s ′), where the

sum is over trajectories that are not necessarily complete.

• Notation:

• Let P(τ) be the probability of sampling a trajectory τ .

• Let d(s) be the maximum depth of state s (length of the longest path from

s0 to s).

9



Proof - Base Case

• Base Case: d(s) = 1, meaning s = s0 (the initial state).

• We need to show that
∑

τ ending in s0
P(τ) = α

∑
s′∈Child(s0)

F (s0 → s ′), for

some constant α.

• Since s0 is the initial state, there’s only one trajectory ending in it: the

empty trajectory.

• Thus,
∑

τ ending in s0
P(τ) = 1.

• We can choose α = 1∑
s′∈Child(s0)

F (s0→s′) to satisfy the equation.

10



Proof - Inductive Step (Part 1)

• Inductive Hypothesis: Assume the property holds for all states with

maximum depth up to d .

• Inductive Step: Consider a state s ′ with maximum depth d + 1.

• We want to show that
∑

τ ends in s′ P(τ) = α
∑

s′′∈Child(s′) F (s
′ → s ′′).

• We can write the sum of probabilities of trajectories ending in s ′ as:∑
τ ends in s′

P(τ) =
∑

s∈Par(s′)

PF (s
′|s)

∑
τ̃ ends in s

P(τ̃)

11



Proof - Inductive Step (Part 2)

• Using the inductive hypothesis, we can replace
∑

τ̃ ends in s P(τ̃) with

α
∑

s′′∈Child(s) F (s → s ′′).

• This gives us:

∑
τ ends in s′

P(τ) =
∑

s∈Par(s′)

PF (s
′|s)

α
∑

s′′∈Child(s)

F (s → s ′′)


= α

∑
s∈Par(s′)

F (s → s ′)∑
s′′∈Child(s) F (s → s ′′)

 ∑
s′′∈Child(s)

F (s → s ′′)


= α

∑
s∈Par(s′)

F (s → s ′)

• By the flow matching property,∑
s∈Par(s′) F (s → s ′) =

∑
s′′∈Child(s′) F (s

′ → s ′′).

• Therefore,
∑

τ ends in s′ P(τ) = α
∑

s′′∈Child(s′) F (s
′ → s ′′)
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Proof - Conclusion (Part 1)

• We have shown that for any state s ′, the sum of probabilities of

trajectories ending in s ′ is proportional to the sum of flows leaving s ′.

• Now, consider the probability of sampling a state s ∈ X (a terminal state

connected to sf ).

• P⊤(s) =
∑

τ ends in s P(τ)PF (sf |s).

13



Proof - Conclusion (Part 2)

• Using the result from the inductive step, we have:

P⊤(s) =

α
∑

s′′∈Child(s)

F (s → s ′′)

PF (sf |s)

=

α
∑

s′′∈Child(s)

F (s → s ′′)

 F (s → sf )∑
s′′∈Child(s) F (s → s ′′)

= αF (s → sf )

• By the reward matching property, F (s → sf ) = R(s).

• Therefore, P(s) = αR(s).

• QED
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How to find the flows?

Simple way to find F : Solve the linear system of equations defined by

flow-matching and reward-matching conditions, and positivity constraint.

Number of unknowns: |A|

But impractical for interesting spaces (think of the “small molecule” space that

is of size > 1060).

15



Estimating Flows

• In practice, the state space is often too large to explicitly represent the

flow network.

• Solution: Use a neural network to approximate the flow function.

• Example: For molecular graphs, we can use a Graph Neural Network

(GNN) or a Transformer.
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Neural network architecture for approximating the forward transition probabilities Pθ(Gt+1|Gt).

The input graph G is encoded as a set of possible edges. Each edge is embedded and fed into a

Linear Transformer. Two separate output heads predict the probability of adding a new edge and

the probability of terminating the trajectory, respectively.

Source: “Bayesian Structure Learning with Generative Flow Networks”, Deleu et al. 2022
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flow network.

• Solution: Use a neural network to approximate the flow function.

• Example: For molecular graphs, we can use a Graph Neural Network

(GNN) or a Transformer.

Neural network architecture for approximating the forward transition probabilities Pθ(Gt+1|Gt).

The input graph G is encoded as a set of possible edges. Each edge is embedded and fed into a

Linear Transformer. Two separate output heads predict the probability of adding a new edge and

the probability of terminating the trajectory, respectively.

Source: “Bayesian Structure Learning with Generative Flow Networks”, Deleu et al. 2022

And we get generalization for free!
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Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:

∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X )−
∑

s→v ̸=sf

Fθ(s → v)

2

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X ) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.
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Digression: Linear Least Squares and TD(0)

• Linear Least Squares (LLS): Given a system of linear equations

Ax = b, LLS finds an approximate solution x̂ that minimizes the

squared Euclidean norm of the residual: ||Ax̂ − b||2.
• TD(0) in Reinforcement Learning:

• TD(0) learns the value function V (s) of a state s under a policy π.

• The update rule is: V (s)← V (s) + α(R + γV (s′)− V (s)).

• This can done by minimizing the squared difference between the two

sides of the Bellman equation.
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Experimental Setup: Molecule Generation

• Goal: Generate a diverse set of small molecules with high reward.

• Environment: Large-scale environment for sequential molecule generation

(up to 1060 states, 100-2000 actions per state).

• Molecule Generation: Generate molecules by parts using a predefined

vocabulary of building blocks (junction tree framework, also called

fragment-based drug design – See Jin et al., 2020, Kumar et al., 2012, Xie

et al., 2021.)

• Actions: Choose an atom to attach a block to, choose which block to

attach, or stop the editing sequence.

• DAG: Multiple action sequences can lead to the same molecule graph.

• Reward: Pretrained proxy model (Message Passing NN) that predicts the

binding energy of a molecule to a protein target (sEH).

• MCMC Baseline (“MARS: Markov Molecular Sampling for Multi-objective

Drug Discovery”, Xie et al., 2021. (SOTA before GFNs))

18



Experimental Setup: Molecule Generation (Continued)

• Proxy Model: MPNN over the atom graph, trained on 300k molecules

with docking scores.

• Flow Predictor: MPNN over the junction tree graph (similar to MARS).

• Training: All models trained with up to 106 molecules.

• Exploratory Policy: Mixture between PF (a | s) with probability 0.95 and

a uniform distribution over allowed actions with probability 0.05.

19



Experimental Results: Molecule Generation (Continued)

• High-Reward Molecule Discovery: GFlowNet finds significantly more

unique molecules with a score above 8 than the proxy’s dataset.

• Diversity: GFlowNet generates more diverse candidates (lower average

pairwise Tanimoto similarity) compared to MARS and PPO.

• Mode Discovery: GFlowNet discovers significantly more modes

(Bemis-Murcko scaffolds) than MARS.

Source: “Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation”,

E. Bengio et al., 2021

GFlowNet discovers significantly more modes (Bemis-Murcko scaffolds) than MARS.

20



Limitations of Flow Matching

∑
s∈S

(
log

∑
u→s Fθ(u → s)∑
s→v Fθ(s → v)

)2

• Cost: Evaluating a term of the sum requires n + 1 neural network calls,

where n is the number of parents of a state s.

• Locality: Flow matching objective is local - it only considers the in-flow

and out-flow of individual states.

• Slow Credit Assignment: Updates mainly affect states near high-reward

outcomes, leading to slow propagation of information.

Illustration of slow credit assignment in flow matching. The update from a high-reward state

propagates slowly backwards through the trajectory. 21



Detailed Balance Objective

• Idea: Instead of parameterizing edge flows directly, learn:

• Forward Policy PF (· | s) : Distribution over children of each non-terminal

state s .

• State Flow F (·) : A scalar value for each state.

• Backward Policy PB(· | s) : Distribution over parents for each non-initial

state s (can be either learned or fixed!)

LDB(s → s ′) =

(
log

Fθ(s)P
θ
F (s

′|s)
1s′ ̸=sf Fθ(s ′)Pθ

B(s|s ′) + 1s′=sf R(s)

)2

This objective/loss is equivalent to the flow-matching + reward-matching

objectives/loss – “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al.,

JMLR 2023

22



Trajectory Balance Objective

Trajectory Balance: A Trajectory-Level Objective, “Trajectory balance:

Improved credit assignment in GFlowNets”, Malkin et al. 2023

LTB(τ ;Z
θ,Pθ

F ,P
θ
B) =

(
log

Z θ∏n
i=1 P

θ
F (si |si−1)

R(x)
∏n

i=1 P
θ
B(si−1|si )

)2

=

(
log

Z θPθ
F (τ)

R(x)Pθ
B(τ |x)

)2

While not satisfied:

• Sample a trajectory τ by iteratively sampling states s ′ ∼ PF (. | s)
starting from s0 - or a modified version of PF (e.g., tempered - to

induce diversity) - or any other “full support” policy

• Evaluate ∇θLTB(τ ;Z
θ,Pθ

F ,P
θ
B) (automatic-differentiation)

• θ ← θ − η∇θLTB(τ ;Z
θ,Pθ

F ,P
θ
B)
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Bit Sequence Generation Task

• Goal: Generate bit sequences of length n = 120 with modes at a fixed set

M unknown to the learner.

• Reward Function: R(x) = exp(1−miny∈M d(x , y)/n), where d is the edit

distance.

• Action Space: For different integers k dividing n, actions append a k-bit

”word” to the end of a partial sequence. Trajectory length is n/k.

• Methods Compared:

• GFlowNet with TB

• GFlowNet with FM (equivalent to DB and Soft Q-Learning in this case)

• A2C with Entropy Regularization

• Soft Actor-Critic (SAC)

• MARS

• Architecture: Transformer-based architecture for all methods.
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Bit Sequence Generation Results

n = 120, |M| = 60, k ∈ {1, 2, 4, 6, 8, 10}

Spearman correlation vs. number

of bits k in the action space. Number of modes discovered during training with k = 1.

• Observation (Left): GFlowNets with TB have the highest correlation

across all action space sizes. FM’s performance improves with increasing k

(shorter trajectories) but degrades with larger action spaces.

• Observation (Right): For a fixed k, GFlowNets with TB discover more

modes faster than other methods.
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Conditional GFlowNets

• Like any generative model, we can condition a GFlowNet on some auxiliary

data, or context

• For example, we could imagine the same structured space, but different

reward functions encoding different desiderate

• We can make a GFlowNet conditional by training it with the condition as

an input: PF (s
′ | s, condition)

• For example, this has been used for language modeling, where the policy

PF corresponds to a (large) language model, and the condition is the

prompt or context: “Amortizing intractable inference in large language

models”, Hu et al. 2023

• We get generalization across conditions for free!
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Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

Disclaimer: Even though “reasoning” is in the title, I do not believe that LLMs

reason. In fact, I do not know what reasoning is.

This is about “chain-of-thought reasoning”, or “finding the response to a

prompt by generating intermediate steps”
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Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

• Generating tokens, or better yet, reasoning steps, can be described by a

DAG (a tree actually)

• RLHF inherently aims to maximize a single reward signal, often leading to

the exploitation of a narrow set of solution strategies

• We can score both “complete reasoning paths” and “partial reasoning

paths” using MCTS-based process reward models (PRM, “Solving math

word problems with process- and outcome-based feedback”, Uesato et al.

2022)

• We finetune with 10k entries of the OpenMathInstruct-2 dataset (NVIDIA,

2024), using a PRM (Qwen2.5-7B-math finetuned on a dataset generated

using 70k entries of OpenMathInstruct-2)
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Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

Example entry of the OpenMathInstruct-2 dataset
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Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)
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Why Continuous GFlowNets?

“A theory of continuous generative flow networks”, Lahlou et al., ICML 2023

• GFlowNets have proven advantages over and connections to:

• MCMC

• Reinforcement Learning

• Hierarchical Variational Inference

• The proven advantages have been confirmed in discrete scenarios:

• Biological sequence design

• Bayesian structure learning

• Robust scheduling problem

• Discrete image modeling

• Many interesting sampling problems do not exhibit a discrete DAG structure:

• Bayesian structure learning with parameters (Given a dataset D, learn

p(G ,θ | D) ∝ p(D | G ,θ)p(G ,θ), where (G ,θ) is a directed graphical

model)

• Molecular conformation design

• Image generation

• . . .
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“Joint Bayesian Inference of Graphical Structure

and Parameters with a Single Generative Flow

Network”, Deleu et al. 2023
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• Image generation

• . . .
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• Molecular conformation design

• Image generation
“Unifying Generative

Models with GFlowNets

and Beyond”, Zhang et al.

2022

• . . .
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How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:
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How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components
in describing children and parents:

• Example: The child set of a state s can be the union of a continuous subset

of the state space S and the sink state sf (denoted ⊥ sometimes).
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How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components
in describing children and parents:

• Example: The child set of a state s can be the union of a continuous subset

of the state space S and the sink state sf (denoted ⊥ sometimes).

Examples

s0

⊥

s0

s1 s2 s99 s100

⊥
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How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:

Examples

Figure (modified) from Generative Flow Networks for Discrete Probabilistic Modeling, Zhang et al., 2022
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How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:

Appropriate mathematical tool
A transition kernel on a measurable space (S,Σ) is a function κ : S × Σ→ R+

such that:

• ∀B ∈ Σ, s 7→ κ(s,B) is measurable

• ∀s ∈ S, B 7→ κ(s,B) is a positive measure on (S,Σ)
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How to describe a DAG-like structure in a general space ?

Examples

s0

⊥

S = [0, 1]2

• κ(s0,B) = 0 if B does not intersect

the bottom left quarter disk →
Support of κ(s0,−) is the quarter

disk.

• κ(s,B) = 0 if B does not intersect

the corresponding quarter circle, and

does not contain ⊥ → Support of

κ(s,−) is the union of the quarter

circle and the singleton {⊥}.

Appropriate mathematical tool
A transition kernel on a measurable space (S,Σ) is a function κ : S × Σ→ R+

such that:

• ∀B ∈ Σ, s 7→ κ(s,B) is measurable

• ∀s ∈ S, B 7→ κ(s,B) is a positive measure on (S,Σ)
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Everything works out well with densities rather than PMFs

Discrete GFlowNets Generalized GFlowNets

Directed acyclic pointed graph G = (S,A, s0, sf ) Measurable pointed graph G = (S̄, T ,Σ, s0, sf , κ, κb, ν)

Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Reward function R Reward measure R, of density r wrt ν

(S̄, T ) is a topological space (T is the set of open subsets of S̄). Σ is the Borel σ-algebra associated to

the topology on S̄.

s0 and sf are the source and sink states.

κ, κb are two σ-finite kernels on (S̄,Σ). ν is a σ-finite measure on (S̄,Σ).

LDB(s, s
′; θ) =

(
log

u(s; θ)pF (s, s
′; θ)

u(s ′; θ)pB(s ′, s; θ)

)2

Ln
TB(τ ; θ) =

(
log

Zθ

∏n
t=0 pF (st , st+1; θ)

r(sn)
∏n−1

t=0 pB(st+1, st ; θ)

)2
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Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Backward policy PB Backward kernel PB , of density pB wrt κb

Reward function R Reward measure R, of density r wrt ν
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GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ )

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal
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Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :
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R(xτ )
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unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

LHVI,f (PF ,PB ) = Df (PB (τ)∥PF (τ))
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“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ )

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

LHVI,f (PF ,PB ) = Df (PB (τ)∥PF (τ))

Example:

DKL(PF∥PB ) = EPF (τ)

[
log

PF (τ)

PB (τ)

]

= EPF (τ)

[
log

PF (τ)

R(xτ )
∏

s→s′∈τ,s′ ̸=sf
PB (s | s′)

]
+ log Z
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GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ )

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

Loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB ) DKL(PF∥PB )
Forward KL DKL(PB∥PF ) DKL(PB∥PF )
Wake-sleep (WS) DKL(PB∥PF ) DKL(PF∥PB )
Reverse wake-sleep DKL(PF∥PB ) DKL(PB∥PF )

31



GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

GFlowNet (Trajectory Balance)

LTB(τ) =

(
log

ZϕPF (τ)

R(xτ )PB (τ | xτ )

)2

The learner is free to decide where trajectories τ
come from: off-policy, RL exploration methods,

. . .

HVM

LHVI,f (PF ,PB ) = Df (PB (τ)∥PF (τ))

(Surrogate) loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB ) DKL(PF∥PB )
Forward KL DKL(PB∥PF ) DKL(PB∥PF )
Wake-sleep (WS) DKL(PB∥PF ) DKL(PF∥PB )
Reverse wake-sleep DKL(PF∥PB ) DKL(PB∥PF )

Objectives in red and off-policy training require
importance weighting
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GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

GFlowNet (Trajectory Balance)

LTB(τ) =

(
log

ZϕPF (τ)

R(xτ )PB (τ | xτ )

)2

The learner is free to decide where trajectories τ
come from: off-policy, RL exploration methods,

. . .

HVM

LHVI,f (PF ,PB ) = Df (PB (τ)∥PF (τ))

(Surrogate) loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB ) DKL(PF∥PB )
Forward KL DKL(PB∥PF ) DKL(PB∥PF )
Wake-sleep (WS) DKL(PB∥PF ) DKL(PF∥PB )
Reverse wake-sleep DKL(PF∥PB ) DKL(PB∥PF )

Objectives in red and off-policy training require
importance weighting

GFlowNets are more amenable to stable off-policy training and thus allow to easily promote
exploration
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Summary of theoretical connections

In certain cases, hierarchical variational algorithms are equivalent, in the sense of
expected gradients, to special cases of GFlowNets

∇θDKL(P
θ
F ∥ Pϕ

B ) =
1

2
Eτ∼PF

[
∇θLTB(τ)

]
∇ϕDKL(P

ϕ
B ∥ Pθ

F ) =
1

2
Eτ∼PB

[
∇ϕLTB(τ)

]
But...

DKL(PF (.; θ)∥PB (.;ϕ)) = EPF (τ ;θ)

[
log

PF (τ ; θ)

R(xτ )PB (τ | xτ ;ϕ)

]
+ log Z

The gradient requires a score function estimator (REINFORCE).
The GFlowNet TB loss performs variance reduction for free (log Z plays the role of a
learned control variate / baseline)
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You can play with GFlowNets using
https://github.com/saleml/torchgfn

Thank you for your attention

salem.lahlou@mbzuai.ac.ae

https://la7.lu

https://github.com/saleml/torchgfn
salem.lahlou@mbzuai.ac.ae
https://la7.lu

