
GFlowNets: A Novel Framework for Diverse Generation in

Combinatorial and Continuous Spaces

MBZUAI Paris Workshop

Salem Lahlou, MBZUAI Abu Dhabi, salem.lahlou@mbzuai.ac.ae, https://la7.lu

13 February 2025

salem.lahlou@mbzuai.ac.ae
https://la7.lu

What’s a GFlowNet?

What it’s not:
a particular Neural Net architecture

1

What’s a GFlowNet?

What it’s not:
a particular Neural Net architecture

What it is:
A generative framework designed to sample combinatorial objects,

with maximal diversity, based on an energy function or a reward function

• Since 2023: sample continuous things as well!

1

What’s a GFlowNet?

What it’s not:
a particular Neural Net architecture

What it is:
A generative framework designed to sample combinatorial objects,

with maximal diversity, based on an energy function or a reward function

• Since 2023: sample continuous things as well!

small molecules proteins1 language Causal/Bayesian Networks
(and their conformation)2 (and their parameters)3

1“Scalable protein design using optimization in a relaxed sequence space”, Frank et al., 2024
2“Molecular Graph Generation by Decomposition and Reassembling”, Yamada and Sugiyama,

2023
3https://causaldm.github.io/

1

https://causaldm.github.io/

Motivation: Drug Discovery

Motivation: Molecular Search for COVID-19 Therapeutics

• Evaluation method: Physics-based simulation & molecular docking (noisy

and expensive !)

• Challenges:

• Many molecules appear promising in simulation

• Good candidates are scattered across chemical space

• Goal: Select most promising candidates for laboratory testing

2

Motivation: Why is diversity Good?

Hidden blind spots

In organic chemistry (and many domains), the proxies we use are fundamentally

imprecise

So we must maintain broad coverage, by searching comprehensively

Source: “Molecular dynamics

simulation ...”, Azamat et al.

2015

Molecular Dynamics can only

do so much!

3

Motivation: Why is diversity Good?

Hidden blind spots

In organic chemistry (and many domains), the proxies we use are fundamentally

imprecise

So we must maintain broad coverage, by searching comprehensively

Source: “GFlowNets for AI-Driven Scientific Discovery”,

Jai et al. 2023

If only one mode is correct, we’d rather

try all 4 than 4 candidates in one mode

Source: “Molecular dynamics

simulation ...”, Azamat et al.

2015

Molecular Dynamics can only

do so much!

3

Motivation: Why is diversity Good?

Hidden blind spots

In organic chemistry (and many domains), the proxies we use are fundamentally

imprecise

So we must maintain broad coverage, by searching comprehensively

Source: “GFlowNets for AI-Driven Scientific Discovery”,

Jai et al. 2023

If only one mode is correct, we’d rather

try all 4 than 4 candidates in one mode

Source: “Molecular dynamics

simulation ...”, Azamat et al.

2015

Molecular Dynamics can only

do so much!

→ Systematic generalization: With only 3 modes discovered, an ideal model should

learn to generate data from the fourth mode.
3

Motivation: Existing Approaches

• Reinforcement Learning

• Framework: MDP with actions and rewards

• Challenge: Exploration remains a complex, unsolved problem

• Result: Limited diversity in discovered solutions

• Markov Chain Monte Carlo

• Challenge: Prohibitively slow mode mixing in practice

• Generative Models (GANs/VAEs/Diffusion)

• Limitation: Don’t fully utilize scalar reward signals

4

Motivation: Existing Approaches

• Reinforcement Learning

• Framework: MDP with actions and rewards

• Challenge: Exploration remains a complex, unsolved problem

• Result: Limited diversity in discovered solutions

Instead of maximizing reward, let’s sample. We want a distribu-

tion π(x) proportional to reward:

π(x) ≈ R(x)

Z
=

R(x)∑
x′∈X R(x ′)

• Markov Chain Monte Carlo

• Challenge: Prohibitively slow mode mixing in practice

• Generative Models (GANs/VAEs/Diffusion)

• Limitation: Don’t fully utilize scalar reward signals

4

Motivation: Existing Approaches

• Reinforcement Learning

• Framework: MDP with actions and rewards

• Challenge: Exploration remains a complex, unsolved problem

• Result: Limited diversity in discovered solutions

Instead of maximizing reward, let’s sample. We want a distribu-

tion π(x) proportional to reward:

π(x) ≈ R(x)

Z
=

R(x)∑
x′∈X R(x ′)

• Markov Chain Monte Carlo

• Challenge: Prohibitively slow mode mixing in practice

• Generative Models (GANs/VAEs/Diffusion)

• Limitation: Don’t fully utilize scalar reward signals

4

Motivation: Existing Approaches

• Reinforcement Learning

• Framework: MDP with actions and rewards

• Challenge: Exploration remains a complex, unsolved problem

• Result: Limited diversity in discovered solutions

Instead of maximizing reward, let’s sample. We want a distribu-

tion π(x) proportional to reward:

π(x) ≈ R(x)

Z
=

R(x)∑
x′∈X R(x ′)

• Markov Chain Monte Carlo

• Challenge: Prohibitively slow mode mixing in practice

• Generative Models (GANs/VAEs/Diffusion)

• Limitation: Don’t fully utilize scalar reward signals

4

Introducing GFlowNets

• GFlowNets are a method for sampling from a desired distribution by

learning a flow (to be defined a in a few slides) in a Directed Acyclic Graph

(DAG).

Figure from Emmanuel Bengio’s tutorial at the Mila GFlowNet workshop, 2023

• Natural fit for combinatorial spaces (e.g., molecules, graphs, natural

language).

• Specifically designed to address the limitations of other methods.

5

Introducing GFlowNets

• GFlowNets are a method for sampling from a desired distribution by

learning a flow (to be defined a in a few slides) in a Directed Acyclic Graph

(DAG).

• Natural fit for combinatorial spaces (e.g., molecules, graphs, natural

language).

• Specifically designed to address the limitations of other methods.

5

Introducing GFlowNets

• GFlowNets are a method for sampling from a desired distribution by

learning a flow (to be defined a in a few slides) in a Directed Acyclic Graph

(DAG).

• Natural fit for combinatorial spaces (e.g., molecules, graphs, natural

language).

• Specifically designed to address the limitations of other methods.

5

Introducing GFlowNets

• GFlowNets are a method for sampling from a desired distribution by

learning a flow (to be defined a in a few slides) in a Directed Acyclic Graph

(DAG).

• Natural fit for combinatorial spaces (e.g., molecules, graphs, natural

language).

• Specifically designed to address the limitations of other methods.

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

5

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).

• S is the set of states, including special initial state s0 and sink state sf .

6

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).
• S is the set of states, including special initial state s0 and sink state sf .

(Warning: Some authors prefer not to use sf . The math is equivalent.)

6

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).
• S is the set of states, including special initial state s0 and sink state sf .

• X = S f ⊆ S is the set of states we want to sample from, with a given reward

function R(s) > 0 for each s ∈ X .

• A complete trajectory τ is a path from s0 to sf . Denoted

τ = (s0 → s1 → . . . → sn → sn+1 = sf)

• Constructiveness assumption: We can build states in X step-by-step, starting

from s0.

6

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).
• S is the set of states, including special initial state s0 and sink state sf .

• X = S f ⊆ S is the set of states we want to sample from, with a given reward

function R(s) > 0 for each s ∈ X .

• A complete trajectory τ is a path from s0 to sf . Denoted

τ = (s0 → s1 → . . . → sn → sn+1 = sf)

• Constructiveness assumption: We can build states in X step-by-step, starting

from s0.

6

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

• We’ll be working with a Directed Acyclic Graph (DAG): G = (S,A).
• S is the set of states, including special initial state s0 and sink state sf .

• X = S f ⊆ S is the set of states we want to sample from, with a given reward

function R(s) > 0 for each s ∈ X .

• A complete trajectory τ is a path from s0 to sf . Denoted

τ = (s0 → s1 → . . . → sn → sn+1 = sf)

• Constructiveness assumption: We can build states in X step-by-step, starting

from s0.

6

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

Given local distributions (the policy) PF (s
′ | s), we can define probability distributions

over trajectories:

PF (s0 → s1 → . . .→ sn → sn+1 = sf) =
n∏

i=0

PF (si+1 | si)

• Learning Goal: Given a DAG G, and a reward function R, find a policy PF such
that the terminating state distribution satisfies for all sn ∈ X :

P⊤
F (sn) :=

∑
τ∈T : τ ends in sn→sf

PF (τ) =
R(sn)∑
x∈X R(x)

.

6

Notations and Problem Setting

Source: “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al., JMLR 2023

Given local distributions (the policy) PF (s
′ | s), we can define probability distributions

over trajectories:

PF (s0 → s1 → . . .→ sn → sn+1 = sf) =
n∏

i=0

PF (si+1 | si)

• Learning Goal: Given a DAG G, and a reward function R, find a policy PF such
that the terminating state distribution satisfies for all sn ∈ X :

P⊤
F (sn) :=

∑
τ∈T : τ ends in sn→sf

PF (τ) =
R(sn)∑
x∈X R(x)

.

We do this via flows: a function F : A → R≥0 that defines PF (s
′ | s) =

F (s→s′)∑
s′′∈Ch(s)

F (s→s′′) .

6

Sampling Procedure

Algorithm 1 Sampling from a trained GFlowNet

Input: Edge flows F (s → s ′) for all edges.

s ← s0 (Start at the initial state)

While s ̸= sf :

• Compute PF (s
′|s) = F (s→s′)∑

s′′∈Child(s) F (s→s′′) for all children s ′ of s.

• Sample s ′ ∼ PF (s
′|s)

• s ← s ′

Return s

7

Main Result

An edge-flow function F : A→ R≥0 satisfies:

• the flow-matching conditions, if:

∀s ′ ̸= s0, sf ,
∑

s∈Par(s′)

F (s → s ′) =
∑

s′′∈Child(s′)

F (s ′ → s ′′)

• the reward-matching conditions, if:

∀s ∈ X = Par(sf), F (s → sf) = R(s)

F is then said to be a valid flow.

8

Main Result

An edge-flow function F : A→ R≥0 satisfies:

• the flow-matching conditions, if:

∀s ′ ̸= s0, sf ,
∑

s∈Par(s′)

F (s → s ′) =
∑

s′′∈Child(s′)

F (s ′ → s ′′)

• the reward-matching conditions, if:

∀s ∈ X = Par(sf), F (s → sf) = R(s)

F is then said to be a valid flow.

Let F be a valid flow. Then, Algorithm 1 samples states s ∈ X with

probabilities proportional to R(s). In other words, there exists a constant

α > 0 such that the probability of sampling s ∈ X is αR(s).

Naturally, α−1 =
∑

s∈X R(s) is the unknown partition function.

8

Proof - Setup

• Goal:Prove that the sampling procedure samples states in X
proportionally to their rewards.

• Strategy:We’ll use strong induction on the maximum depth of a state, to

show that ∀s ∈ S,
∑

τ ending in s P(τ) = α
∑

s′∈Child(s) F (s → s ′), where the

sum is over trajectories that are not necessarily complete.

• Notation:

• Let P(τ) be the probability of sampling a trajectory τ .

• Let d(s) be the maximum depth of state s (length of the longest path from

s0 to s).

9

Proof - Base Case

• Base Case: d(s) = 1, meaning s = s0 (the initial state).

• We need to show that
∑

τ ending in s0
P(τ) = α

∑
s′∈Child(s0)

F (s0 → s ′), for

some constant α.

• Since s0 is the initial state, there’s only one trajectory ending in it: the

empty trajectory.

• Thus,
∑

τ ending in s0
P(τ) = 1.

• We can choose α = 1∑
s′∈Child(s0)

F (s0→s′) to satisfy the equation.

10

Proof - Inductive Step (Part 1)

• Inductive Hypothesis: Assume the property holds for all states with

maximum depth up to d .

• Inductive Step: Consider a state s ′ with maximum depth d + 1.

• We want to show that
∑

τ ends in s′ P(τ) = α
∑

s′′∈Child(s′) F (s
′ → s ′′).

• We can write the sum of probabilities of trajectories ending in s ′ as:∑
τ ends in s′

P(τ) =
∑

s∈Par(s′)

PF (s
′|s)

∑
τ̃ ends in s

P(τ̃)

11

Proof - Inductive Step (Part 2)

• Using the inductive hypothesis, we can replace
∑

τ̃ ends in s P(τ̃) with

α
∑

s′′∈Child(s) F (s → s ′′).

• This gives us:

∑
τ ends in s′

P(τ) =
∑

s∈Par(s′)

PF (s
′|s)

α
∑

s′′∈Child(s)

F (s → s ′′)


= α

∑
s∈Par(s′)

F (s → s ′)∑
s′′∈Child(s) F (s → s ′′)

 ∑
s′′∈Child(s)

F (s → s ′′)


= α

∑
s∈Par(s′)

F (s → s ′)

• By the flow matching property,∑
s∈Par(s′) F (s → s ′) =

∑
s′′∈Child(s′) F (s

′ → s ′′).

• Therefore,
∑

τ ends in s′ P(τ) = α
∑

s′′∈Child(s′) F (s
′ → s ′′)

12

Proof - Conclusion (Part 1)

• We have shown that for any state s ′, the sum of probabilities of

trajectories ending in s ′ is proportional to the sum of flows leaving s ′.

• Now, consider the probability of sampling a state s ∈ X (a terminal state

connected to sf).

• P⊤(s) =
∑

τ ends in s P(τ)PF (sf |s).

13

Proof - Conclusion (Part 2)

• Using the result from the inductive step, we have:

P⊤(s) =

α
∑

s′′∈Child(s)

F (s → s ′′)

PF (sf |s)

=

α
∑

s′′∈Child(s)

F (s → s ′′)

 F (s → sf)∑
s′′∈Child(s) F (s → s ′′)

= αF (s → sf)

• By the reward matching property, F (s → sf) = R(s).

• Therefore, P(s) = αR(s).

• QED

14

How to find the flows?

Simple way to find F : Solve the linear system of equations defined by

flow-matching and reward-matching conditions, and positivity constraint.

Number of unknowns: |A|

But impractical for interesting spaces (think of the “small molecule” space that

is of size > 1060).

15

Estimating Flows

• In practice, the state space is often too large to explicitly represent the

flow network.

• Solution: Use a neural network to approximate the flow function.

• Example: For molecular graphs, we can use a Graph Neural Network

(GNN) or a Transformer.

16

Estimating Flows

• In practice, the state space is often too large to explicitly represent the

flow network.

• Solution: Use a neural network to approximate the flow function.

• Example: For molecular graphs, we can use a Graph Neural Network

(GNN) or a Transformer.

Neural network architecture for approximating the forward transition probabilities Pθ(Gt+1|Gt).

The input graph G is encoded as a set of possible edges. Each edge is embedded and fed into a

Linear Transformer. Two separate output heads predict the probability of adding a new edge and

the probability of terminating the trajectory, respectively.

Source: “Bayesian Structure Learning with Generative Flow Networks”, Deleu et al. 2022

16

Estimating Flows

• In practice, the state space is often too large to explicitly represent the

flow network.

• Solution: Use a neural network to approximate the flow function.

• Example: For molecular graphs, we can use a Graph Neural Network

(GNN) or a Transformer.

Neural network architecture for approximating the forward transition probabilities Pθ(Gt+1|Gt).

The input graph G is encoded as a set of possible edges. Each edge is embedded and fed into a

Linear Transformer. Two separate output heads predict the probability of adding a new edge and

the probability of terminating the trajectory, respectively.

Source: “Bayesian Structure Learning with Generative Flow Networks”, Deleu et al. 2022

And we get generalization for free!

16

Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:

∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X)−
∑

s→v ̸=sf

Fθ(s → v)

2

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.

17

Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:

∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X)−
∑

s→v ̸=sf

Fθ(s → v)

2

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.

17

Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X)−
∑

s→v ̸=sf

Fθ(s → v)

2

Digression: Linear Least Squares and TD(0)

• Linear Least Squares (LLS): Given a system of linear equations

Ax = b, LLS finds an approximate solution x̂ that minimizes the

squared Euclidean norm of the residual: ||Ax̂ − b||2.
• TD(0) in Reinforcement Learning:

• TD(0) learns the value function V (s) of a state s under a policy π.

• The update rule is: V (s)← V (s) + α(R + γV (s′)− V (s)).

• This can done by minimizing the squared difference between the two

sides of the Bellman equation.

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.

17

Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:

∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X)−
∑

s→v ̸=sf

Fθ(s → v)

2

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.

17

Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:

∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X)−
∑

s→v ̸=sf

Fθ(s → v)

2

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.

17

Solution: Mean Squared Error

• Idea: Directly minimize the squared difference between the two sides of

the flow matching equations.

• Loss function:

∑
s∈S\{s0,sf }

∑
u→s

Fθ(u → s)− R(s)1(s ∈ X)−
∑

s→v ̸=sf

Fθ(s → v)

2

• In practice:

∑
s∈S\{s0,sf }

(
log

∑
u→s Fθ(u → s)

R(s)1(s ∈ X) +
∑

s→v ̸=sf
Fθ(s → v)

)2

• Problem:
∑

s∈S\{s0,sf }
is inaccessble in interesting settings.

• Solution: we therefore minimize (an empirical approximation of) Es∼p(s),

where p is any full-support distribution on S, using SGD.

17

Experimental Setup: Molecule Generation

• Goal: Generate a diverse set of small molecules with high reward.

• Environment: Large-scale environment for sequential molecule generation

(up to 1060 states, 100-2000 actions per state).

• Molecule Generation: Generate molecules by parts using a predefined

vocabulary of building blocks (junction tree framework, also called

fragment-based drug design – See Jin et al., 2020, Kumar et al., 2012, Xie

et al., 2021.)

• Actions: Choose an atom to attach a block to, choose which block to

attach, or stop the editing sequence.

• DAG: Multiple action sequences can lead to the same molecule graph.

• Reward: Pretrained proxy model (Message Passing NN) that predicts the

binding energy of a molecule to a protein target (sEH).

• MCMC Baseline (“MARS: Markov Molecular Sampling for Multi-objective

Drug Discovery”, Xie et al., 2021. (SOTA before GFNs))

18

Experimental Setup: Molecule Generation (Continued)

• Proxy Model: MPNN over the atom graph, trained on 300k molecules

with docking scores.

• Flow Predictor: MPNN over the junction tree graph (similar to MARS).

• Training: All models trained with up to 106 molecules.

• Exploratory Policy: Mixture between PF (a | s) with probability 0.95 and

a uniform distribution over allowed actions with probability 0.05.

19

Experimental Results: Molecule Generation (Continued)

• High-Reward Molecule Discovery: GFlowNet finds significantly more

unique molecules with a score above 8 than the proxy’s dataset.

• Diversity: GFlowNet generates more diverse candidates (lower average

pairwise Tanimoto similarity) compared to MARS and PPO.

• Mode Discovery: GFlowNet discovers significantly more modes

(Bemis-Murcko scaffolds) than MARS.

Source: “Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation”,

E. Bengio et al., 2021

GFlowNet discovers significantly more modes (Bemis-Murcko scaffolds) than MARS.

20

Limitations of Flow Matching

∑
s∈S

(
log

∑
u→s Fθ(u → s)∑
s→v Fθ(s → v)

)2

• Cost: Evaluating a term of the sum requires n + 1 neural network calls,

where n is the number of parents of a state s.

• Locality: Flow matching objective is local - it only considers the in-flow

and out-flow of individual states.

• Slow Credit Assignment: Updates mainly affect states near high-reward

outcomes, leading to slow propagation of information.

Illustration of slow credit assignment in flow matching. The update from a high-reward state

propagates slowly backwards through the trajectory. 21

Detailed Balance Objective

• Idea: Instead of parameterizing edge flows directly, learn:

• Forward Policy PF (· | s) : Distribution over children of each non-terminal

state s .

• State Flow F (·) : A scalar value for each state.

• Backward Policy PB(· | s) : Distribution over parents for each non-initial

state s (can be either learned or fixed!)

LDB(s → s ′) =

(
log

Fθ(s)P
θ
F (s

′|s)
1s′ ̸=sf Fθ(s ′)Pθ

B(s|s ′) + 1s′=sf R(s)

)2

This objective/loss is equivalent to the flow-matching + reward-matching

objectives/loss – “GFlowNet Foundations”, Bengio∗, Lahlou∗, Deleu∗ et al.,

JMLR 2023

22

Trajectory Balance Objective

Trajectory Balance: A Trajectory-Level Objective, “Trajectory balance:

Improved credit assignment in GFlowNets”, Malkin et al. 2023

LTB(τ ;Z
θ,Pθ

F ,P
θ
B) =

(
log

Z θ∏n
i=1 P

θ
F (si |si−1)

R(x)
∏n

i=1 P
θ
B(si−1|si)

)2

=

(
log

Z θPθ
F (τ)

R(x)Pθ
B(τ |x)

)2

While not satisfied:

• Sample a trajectory τ by iteratively sampling states s ′ ∼ PF (. | s)
starting from s0 - or a modified version of PF (e.g., tempered - to

induce diversity) - or any other “full support” policy

• Evaluate ∇θLTB(τ ;Z
θ,Pθ

F ,P
θ
B) (automatic-differentiation)

• θ ← θ − η∇θLTB(τ ;Z
θ,Pθ

F ,P
θ
B)

23

Bit Sequence Generation Task

• Goal: Generate bit sequences of length n = 120 with modes at a fixed set

M unknown to the learner.

• Reward Function: R(x) = exp(1−miny∈M d(x , y)/n), where d is the edit

distance.

• Action Space: For different integers k dividing n, actions append a k-bit

”word” to the end of a partial sequence. Trajectory length is n/k.

• Methods Compared:

• GFlowNet with TB

• GFlowNet with FM (equivalent to DB and Soft Q-Learning in this case)

• A2C with Entropy Regularization

• Soft Actor-Critic (SAC)

• MARS

• Architecture: Transformer-based architecture for all methods.

24

Bit Sequence Generation Results

n = 120, |M| = 60, k ∈ {1, 2, 4, 6, 8, 10}

Spearman correlation vs. number

of bits k in the action space. Number of modes discovered during training with k = 1.

• Observation (Left): GFlowNets with TB have the highest correlation

across all action space sizes. FM’s performance improves with increasing k

(shorter trajectories) but degrades with larger action spaces.

• Observation (Right): For a fixed k, GFlowNets with TB discover more

modes faster than other methods.

25

Conditional GFlowNets

• Like any generative model, we can condition a GFlowNet on some auxiliary

data, or context

• For example, we could imagine the same structured space, but different

reward functions encoding different desiderate

• We can make a GFlowNet conditional by training it with the condition as

an input: PF (s
′ | s, condition)

• For example, this has been used for language modeling, where the policy

PF corresponds to a (large) language model, and the condition is the

prompt or context: “Amortizing intractable inference in large language

models”, Hu et al. 2023

• We get generalization across conditions for free!

26

Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

Disclaimer: Even though “reasoning” is in the title, I do not believe that LLMs

reason. In fact, I do not know what reasoning is.

This is about “chain-of-thought reasoning”, or “finding the response to a

prompt by generating intermediate steps”

27

Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

27

Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

27

Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

• Generating tokens, or better yet, reasoning steps, can be described by a

DAG (a tree actually)

• RLHF inherently aims to maximize a single reward signal, often leading to

the exploitation of a narrow set of solution strategies

• We can score both “complete reasoning paths” and “partial reasoning

paths” using MCTS-based process reward models (PRM, “Solving math

word problems with process- and outcome-based feedback”, Uesato et al.

2022)

• We finetune with 10k entries of the OpenMathInstruct-2 dataset (NVIDIA,

2024), using a PRM (Qwen2.5-7B-math finetuned on a dataset generated

using 70k entries of OpenMathInstruct-2)

27

Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

Example entry of the OpenMathInstruct-2 dataset

27

Application in LLM reasoning

“GFlowNet-Finetuning of Language Models using Process Reward Models for

Mathematical Reasoning”, Younsi, ..., Lahlou, 2025 (under review)

27

Why Continuous GFlowNets?

“A theory of continuous generative flow networks”, Lahlou et al., ICML 2023

• GFlowNets have proven advantages over and connections to:

• MCMC

• Reinforcement Learning

• Hierarchical Variational Inference

• The proven advantages have been confirmed in discrete scenarios:

• Biological sequence design

• Bayesian structure learning

• Robust scheduling problem

• Discrete image modeling

• Many interesting sampling problems do not exhibit a discrete DAG structure:

• Bayesian structure learning with parameters (Given a dataset D, learn

p(G ,θ | D) ∝ p(D | G ,θ)p(G ,θ), where (G ,θ) is a directed graphical

model)

• Molecular conformation design

• Image generation

• . . .

28

Why Continuous GFlowNets?

“A theory of continuous generative flow networks”, Lahlou et al., ICML 2023

• GFlowNets have proven advantages over and connections to:

• MCMC

• Reinforcement Learning

• Hierarchical Variational Inference

• The proven advantages have been confirmed in discrete scenarios:

• Biological sequence design

• Bayesian structure learning

• Robust scheduling problem

• Discrete image modeling

• Many interesting sampling problems do not exhibit a discrete DAG structure:

• Bayesian structure learning with parameters (Given a dataset D, learn

p(G ,θ | D) ∝ p(D | G ,θ)p(G ,θ), where (G ,θ) is a directed graphical

model)

“Joint Bayesian Inference of Graphical Structure

and Parameters with a Single Generative Flow

Network”, Deleu et al. 2023

• Molecular conformation design

• Image generation

• . . .

28

Why Continuous GFlowNets?

“A theory of continuous generative flow networks”, Lahlou et al., ICML 2023

• GFlowNets have proven advantages over and connections to:

• MCMC

• Reinforcement Learning

• Hierarchical Variational Inference

• The proven advantages have been confirmed in discrete scenarios:

• Biological sequence design

• Bayesian structure learning

• Robust scheduling problem

• Discrete image modeling

• Many interesting sampling problems do not exhibit a discrete DAG structure:

• Bayesian structure learning with parameters (Given a dataset D, learn

p(G ,θ | D) ∝ p(D | G ,θ)p(G ,θ), where (G ,θ) is a directed graphical

model)

• Molecular conformation design

• Image generation

• . . .

28

Why Continuous GFlowNets?

“A theory of continuous generative flow networks”, Lahlou et al., ICML 2023

• GFlowNets have proven advantages over and connections to:

• MCMC

• Reinforcement Learning

• Hierarchical Variational Inference

• The proven advantages have been confirmed in discrete scenarios:

• Biological sequence design

• Bayesian structure learning

• Robust scheduling problem

• Discrete image modeling

• Many interesting sampling problems do not exhibit a discrete DAG structure:

• Bayesian structure learning with parameters (Given a dataset D, learn

p(G ,θ | D) ∝ p(D | G ,θ)p(G ,θ), where (G ,θ) is a directed graphical

model)

• Molecular conformation design

• Image generation
“Unifying Generative

Models with GFlowNets

and Beyond”, Zhang et al.

2022

• . . .

28

Why Continuous GFlowNets?

“A theory of continuous generative flow networks”, Lahlou et al., ICML 2023

• GFlowNets have proven advantages over and connections to:

• MCMC

• Reinforcement Learning

• Hierarchical Variational Inference

• The proven advantages have been confirmed in discrete scenarios:

• Biological sequence design

• Bayesian structure learning

• Robust scheduling problem

• Discrete image modeling

• Many interesting sampling problems do not exhibit a discrete DAG structure:

• Bayesian structure learning with parameters (Given a dataset D, learn

p(G ,θ | D) ∝ p(D | G ,θ)p(G ,θ), where (G ,θ) is a directed graphical

model)

• Molecular conformation design

• Image generation

• . . .

28

How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:

29

How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:

29

How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components
in describing children and parents:

• Example: The child set of a state s can be the union of a continuous subset

of the state space S and the sink state sf (denoted ⊥ sometimes).

29

How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components
in describing children and parents:

• Example: The child set of a state s can be the union of a continuous subset

of the state space S and the sink state sf (denoted ⊥ sometimes).

Examples

s0

⊥

s0

s1 s2 s99 s100

⊥

29

How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:

Examples

Figure (modified) from Generative Flow Networks for Discrete Probabilistic Modeling, Zhang et al., 2022

29

How to describe a DAG-like structure in a general space ?

Desiderata

• The ability to describe a continuum of children and parents of a state, of

arbitrary dimension.

• The ability to mix between both continuous and a discrete components

in describing children and parents:

Appropriate mathematical tool
A transition kernel on a measurable space (S,Σ) is a function κ : S × Σ→ R+

such that:

• ∀B ∈ Σ, s 7→ κ(s,B) is measurable

• ∀s ∈ S, B 7→ κ(s,B) is a positive measure on (S,Σ)

29

How to describe a DAG-like structure in a general space ?

Examples

s0

⊥

S = [0, 1]2

• κ(s0,B) = 0 if B does not intersect

the bottom left quarter disk →
Support of κ(s0,−) is the quarter

disk.

• κ(s,B) = 0 if B does not intersect

the corresponding quarter circle, and

does not contain ⊥ → Support of

κ(s,−) is the union of the quarter

circle and the singleton {⊥}.

Appropriate mathematical tool
A transition kernel on a measurable space (S,Σ) is a function κ : S × Σ→ R+

such that:

• ∀B ∈ Σ, s 7→ κ(s,B) is measurable

• ∀s ∈ S, B 7→ κ(s,B) is a positive measure on (S,Σ)

29

Everything works out well with densities rather than PMFs

Discrete GFlowNets Generalized GFlowNets

Directed acyclic pointed graph G = (S,A, s0, sf) Measurable pointed graph G = (S̄, T ,Σ, s0, sf , κ, κb, ν)

Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Reward function R Reward measure R, of density r wrt ν

(S̄, T) is a topological space (T is the set of open subsets of S̄). Σ is the Borel σ-algebra associated to

the topology on S̄.

s0 and sf are the source and sink states.

κ, κb are two σ-finite kernels on (S̄,Σ). ν is a σ-finite measure on (S̄,Σ).

LDB(s, s
′; θ) =

(
log

u(s; θ)pF (s, s
′; θ)

u(s ′; θ)pB(s ′, s; θ)

)2

Ln
TB(τ ; θ) =

(
log

Zθ

∏n
t=0 pF (st , st+1; θ)

r(sn)
∏n−1

t=0 pB(st+1, st ; θ)

)2

30

Everything works out well with densities rather than PMFs

Discrete GFlowNets Generalized GFlowNets

Directed acyclic pointed graph G = (S,A, s0, sf) Measurable pointed graph G = (S̄, T ,Σ, s0, sf , κ, κb, ν)

Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Reward function R Reward measure R, of density r wrt ν

(S̄, T) is a topological space (T is the set of open subsets of S̄). Σ is the Borel σ-algebra associated to

the topology on S̄.

s0 and sf are the source and sink states.

κ, κb are two σ-finite kernels on (S̄,Σ). ν is a σ-finite measure on (S̄,Σ).

LDB(s, s
′; θ) =

(
log

u(s; θ)pF (s, s
′; θ)

u(s ′; θ)pB(s ′, s; θ)

)2

Ln
TB(τ ; θ) =

(
log

Zθ

∏n
t=0 pF (st , st+1; θ)

r(sn)
∏n−1

t=0 pB(st+1, st ; θ)

)2

30

Everything works out well with densities rather than PMFs

Discrete GFlowNets Generalized GFlowNets

Directed acyclic pointed graph G = (S,A, s0, sf) Measurable pointed graph G = (S̄, T ,Σ, s0, sf , κ, κb, ν)

Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Reward function R Reward measure R, of density r wrt ν

(S̄, T) is a topological space (T is the set of open subsets of S̄). Σ is the Borel σ-algebra associated to

the topology on S̄.

s0 and sf are the source and sink states.

κ, κb are two σ-finite kernels on (S̄,Σ). ν is a σ-finite measure on (S̄,Σ).

LDB(s, s
′; θ) =

(
log

u(s; θ)pF (s, s
′; θ)

u(s ′; θ)pB(s ′, s; θ)

)2

Ln
TB(τ ; θ) =

(
log

Zθ

∏n
t=0 pF (st , st+1; θ)

r(sn)
∏n−1

t=0 pB(st+1, st ; θ)

)2

30

Everything works out well with densities rather than PMFs

Discrete GFlowNets Generalized GFlowNets

Directed acyclic pointed graph G = (S,A, s0, sf) Measurable pointed graph G = (S̄, T ,Σ, s0, sf , κ, κb, ν)

Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Reward function R Reward measure R, of density r wrt ν

(S̄, T) is a topological space (T is the set of open subsets of S̄). Σ is the Borel σ-algebra associated to

the topology on S̄.

s0 and sf are the source and sink states.

κ, κb are two σ-finite kernels on (S̄,Σ). ν is a σ-finite measure on (S̄,Σ).

LDB(s, s
′; θ) =

(
log

u(s; θ)pF (s, s
′; θ)

u(s ′; θ)pB(s ′, s; θ)

)2

Ln
TB(τ ; θ) =

(
log

Zθ

∏n
t=0 pF (st , st+1; θ)

r(sn)
∏n−1

t=0 pB(st+1, st ; θ)

)2

30

Everything works out well with densities rather than PMFs

Discrete GFlowNets Generalized GFlowNets

Directed acyclic pointed graph G = (S,A, s0, sf) Measurable pointed graph G = (S̄, T ,Σ, s0, sf , κ, κb, ν)

Children and parents of a state s Supports of measures κ(s,−) and κb(s,−)
State flow function F Flow measure µ, of density u wrt ν

Forward policy PF Forward kernel PF , of density pF wrt κ

Backward policy PB Backward kernel PB , of density pB wrt κb

Reward function R Reward measure R, of density r wrt ν

(S̄, T) is a topological space (T is the set of open subsets of S̄). Σ is the Borel σ-algebra associated to

the topology on S̄.

s0 and sf are the source and sink states.

κ, κb are two σ-finite kernels on (S̄,Σ). ν is a σ-finite measure on (S̄,Σ).

LDB(s, s
′; θ) =

(
log

u(s; θ)pF (s, s
′; θ)

u(s ′; θ)pB(s ′, s; θ)

)2

Ln
TB(τ ; θ) =

(
log

Zθ

∏n
t=0 pF (st , st+1; θ)

r(sn)
∏n−1

t=0 pB(st+1, st ; θ)

)2

30

GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ)

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

31

GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ)

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

LHVI,f (PF ,PB) = Df (PB (τ)∥PF (τ))

31

GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ)

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

LHVI,f (PF ,PB) = Df (PB (τ)∥PF (τ))

Example:

DKL(PF∥PB) = EPF (τ)

[
log

PF (τ)

PB (τ)

]

= EPF (τ)

[
log

PF (τ)

R(xτ)
∏

s→s′∈τ,s′ ̸=sf
PB (s | s′)

]
+ log Z

31

GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ) :

PB (τ) =
R(xτ)

Z︸︷︷︸
unknown

∏
s→s′∈τ,s′ ̸=sf

PB (s | s′)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

Loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB) DKL(PF∥PB)
Forward KL DKL(PB∥PF) DKL(PB∥PF)
Wake-sleep (WS) DKL(PB∥PF) DKL(PF∥PB)
Reverse wake-sleep DKL(PF∥PB) DKL(PB∥PF)

31

GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

GFlowNet (Trajectory Balance)

LTB(τ) =

(
log

ZϕPF (τ)

R(xτ)PB (τ | xτ)

)2

The learner is free to decide where trajectories τ
come from: off-policy, RL exploration methods,

. . .

HVM

LHVI,f (PF ,PB) = Df (PB (τ)∥PF (τ))

(Surrogate) loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB) DKL(PF∥PB)
Forward KL DKL(PB∥PF) DKL(PB∥PF)
Wake-sleep (WS) DKL(PB∥PF) DKL(PF∥PB)
Reverse wake-sleep DKL(PF∥PB) DKL(PB∥PF)

Objectives in red and off-policy training require
importance weighting

31

GFlowNets and HVMs

“GFlowNets and variational inference”, Malkin∗, Lahlou∗, Deleu∗ et al., ICLR 2023

Given any backward policy PB (s | s′), and target marginal R(x)
Z , that jointly define a target

distribution over trajectories PB (τ)

If we find a policy PF (s
′ | s), defining a distribution over trajectories PF (τ) =

∏
s→s′ PF (s

′ | s),
that equals the target PB (τ)

Then, naturally, following that policy would lead to samples from the target marginal

GFlowNet (Trajectory Balance)

LTB(τ) =

(
log

ZϕPF (τ)

R(xτ)PB (τ | xτ)

)2

The learner is free to decide where trajectories τ
come from: off-policy, RL exploration methods,

. . .

HVM

LHVI,f (PF ,PB) = Df (PB (τ)∥PF (τ))

(Surrogate) loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB) DKL(PF∥PB)
Forward KL DKL(PB∥PF) DKL(PB∥PF)
Wake-sleep (WS) DKL(PB∥PF) DKL(PF∥PB)
Reverse wake-sleep DKL(PF∥PB) DKL(PB∥PF)

Objectives in red and off-policy training require
importance weighting

GFlowNets are more amenable to stable off-policy training and thus allow to easily promote
exploration

31

Summary of theoretical connections

In certain cases, hierarchical variational algorithms are equivalent, in the sense of
expected gradients, to special cases of GFlowNets

∇θDKL(P
θ
F ∥ Pϕ

B) =
1

2
Eτ∼PF

[
∇θLTB(τ)

]
∇ϕDKL(P

ϕ
B ∥ Pθ

F) =
1

2
Eτ∼PB

[
∇ϕLTB(τ)

]
But...

DKL(PF (.; θ)∥PB (.;ϕ)) = EPF (τ ;θ)

[
log

PF (τ ; θ)

R(xτ)PB (τ | xτ ;ϕ)

]
+ log Z

The gradient requires a score function estimator (REINFORCE).
The GFlowNet TB loss performs variance reduction for free (log Z plays the role of a
learned control variate / baseline)

32

You can play with GFlowNets using
https://github.com/saleml/torchgfn

Thank you for your attention

salem.lahlou@mbzuai.ac.ae

https://la7.lu

https://github.com/saleml/torchgfn
salem.lahlou@mbzuai.ac.ae
https://la7.lu

